DOI QR코드

DOI QR Code

Evaluation of Primary Thermal Degradation Feature of M. sacchariflorus After Removing Inorganic Compounds Using Distilled Water

증류수를 이용한 거대억새 내 무기성분 제거 효과 및 열분해 특성 변화 관찰

  • Kim, Jae-Young (Department. Forest Sciences, CALS, Seoul National University) ;
  • Oh, Shinyoung (Department. Forest Sciences, CALS, Seoul National University) ;
  • Hwang, Hyewon (Department. Forest Sciences, CALS, Seoul National University) ;
  • Moon, Yoonho (Bioenergy Crop Research Center, Rural Development Administration) ;
  • Choi, Joon Weon (Department. Forest Sciences, CALS, Seoul National University)
  • 김재영 (서울대학교 농업생명과학대학 산림과학부) ;
  • 오신영 (서울대학교 농업생명과학대학 산림과학부) ;
  • 황혜원 (서울대학교 농업생명과학대학 산림과학부) ;
  • 문윤호 (농촌진흥청 바이오에너지작물센터) ;
  • 최준원 (서울대학교 농업생명과학대학 산림과학부)
  • Received : 2012.10.04
  • Accepted : 2013.07.15
  • Published : 2013.07.25

Abstract

The goal of this study was to investigate change of thermal decomposition feature of miscanthus (Miscanthus sacchariflorus) after removal of inorganic constituents using distilled water (D.I-w; 30, 60 and $90^{\circ}C$). The carbon content was increased whereas the oxygen content was decreased with the temperature of D.I-w treatment. Moreover, ash content was slightly decreased from 4.6% of control to 3.2% of $90^{\circ}C$ D.I-w treated sample. Results of total monomeric sugar contents and X-ray diffraction (XRD) analysis showed that structural changes of cellulose/hemicellulose regions did not occurr during D.I-w treatment. Results of inductively coupled plasma emission spectrometer (ICP-ES) showed that miscanthus has the largest amount of inorganic constituents such as potassium (5,644 ppm), phosphorus (3,995 ppm), magnesium (1,403 ppm) and calcium (711 ppm). Thermogravimetric analysis (TGA) confirmed that the yield of char slightly decreased whereas the yield of volatiles increased with increasing D.I-w treatment temperature. In addition, differential thermogravimetric analysis (DTGA) indicated that the maximum decomposition rate ($V_M$) and temperature ($T_M$) corresponding to VM were varied from $0.82%/^{\circ}C$, $360.60^{\circ}C$ of control to $1.17%/^{\circ}C$, $362.62^{\circ}C$ of $90^{\circ}C$-D.I-w treated sample.

본 연구에서는 30, 60, $90^{\circ}C$의 증류수를 이용하여 거대억새 내에 존재하는 무기성분을 제거한 후 원료의 화학적 변화 및 열분해 특성 변화를 관찰하였다. 증류수 처리 온도가 증가할수록 거대억새의 탄소함량은 44.0% (control)에서 46.2% ($90^{\circ}C$ 처리)로 증가하였으며 산소함량은 49.3% (control)에서 47.0% ($90^{\circ}C$ 처리)로 감소하였다. 또한 증류수 처리 온도가 증가함에 따라 거대억새 내 회분 함량은 4.6% (control)에서 3.2% ($90^{\circ}C$ 처리)로 점차적으로 감소하는 것을 확인할 수 있었다. 주요 단당류 정량 분석 결과 무기성분 제거에 따른 시료의 당 손실은 없는 것으로 확인되었으며 결정화 영역 분석을 통해 셀룰로오스/헤미셀룰로오스 영역의 구조적인 변형도 일어나지 않았음을 알 수 있었다. 무기성분 정량 결과 거대억새 내에는 칼륨(5,644 ppm), 인(3,995 ppm), 마그네슘(1,403 ppm), 칼슘(711 ppm) 등이 상당량 존재하는 것으로 나타났다. 열중량 분석을 통해 거대억새 내 무기성분 함량이 감소할수록 최종적으로 생성되는 탄의 수율이 감소함을 확인하였다. 또한 시료 내 무기성분 함량이 감소함에 따라 최대반응온도($T_M$) 및 최대분해율($V_M$)이 증가하는 경향을 보였다.

Keywords

References

  1. 문윤호, 구본철, 최용환, 안승현, 박선태, 차영록, 안기흥, 김중곤, 서세정. 2010. 유망 바이오에너지작물 "억새" 개발. 한국잡초학회지, 30(4): 330-339. https://doi.org/10.5660/KJWS.2010.30.4.330
  2. 박현태. 2006. 농업 부문 바이오매스의 이용 활성화를 위한 정책 방향과 전략. 한국농촌경제연구원.
  3. Agblevor, F., S. Besler, and A. Wiselogel, 1995. Fast pyrolysis of stored biomass feedstocks. Energy & fuels 9(4): 635-640. https://doi.org/10.1021/ef00052a010
  4. Beale, C. and S. Long, 1997. Seasonal dynamics of nutrient accumulation and partitioning in the perennial C4-grasses Miscanthus giganteus and Spartina cynosuroides. Biomass and Bioenergy 12(6): 419-428. https://doi.org/10.1016/S0961-9534(97)00016-0
  5. Blasi, C. D., C. Branca, and G. D'Errico, 2000. Degradation characteristics of straw and washed straw. Thermochimica acta 364(1-2): 133-142. https://doi.org/10.1016/S0040-6031(00)00634-1
  6. Bullard, M. and P. Metcalfe, 2001. Estimating the energy requirements and $CO_{2}$ emissions from production of the perennial grasses miscanthus, switchgrass and reed canary grass. ADAS Consulting Ltd on behalf of Department of Trade and Industry.
  7. Czernik, S. and A. Bridgwater, 2004. Overview of applications of biomass fast pyrolysis oil. Energy & fuels 18(2): 590-598. https://doi.org/10.1021/ef034067u
  8. Das, P., A. Ganesh, and P. Wangikar, 2004. Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products. Biomass and Bioenergy 27(5): 445-457. https://doi.org/10.1016/j.biombioe.2004.04.002
  9. Demirbas, A. 2005. Bioethanol from cellulosic materials: A renewable motor fuel from biomass. Energy sources 27(4): 327-337. https://doi.org/10.1080/00908310390266643
  10. Eom, I. Y., K. H. Kim, J. Y. Kim, S. M. Lee, H. M. Yeo, I. G. Choi, and J. W. Choi, 2011. Characterization of primary thermal degradation features of lignocellulosic biomass after removal of inorganic metals by diverse solvents. Bioresource Technology 102(3): 3437-3444. https://doi.org/10.1016/j.biortech.2010.10.056
  11. Fahmi, R., A. Bridgwater, L. Darvell, J. Jones, N. Yates, S. Thain, and I. Donnison, 2007. The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow. Fuel 86(10-11): 1560-1569. https://doi.org/10.1016/j.fuel.2006.11.030
  12. Faix, O., D. Meier, and O. Beinhoff, 1989. Analysis of lignocelluloses and lignins from Arundo donax L. and Miscanthus sinensis Anderss., and hydroliquefaction of Miscanthus. Biomass 18(2): 109-126. https://doi.org/10.1016/0144-4565(89)90088-7
  13. Green, A.E.S. 2004. Process and device for pyrolysis of feedstock, Google Patents.
  14. Heo, H. S., H. J. Park, J. H. Yim, J. M. Sohn, J. Park, S. S. Kim, C. Ryu, J. K. Jeon, and Y. K. Park, 2010. Influence of operation variables on fast pyrolysis of Miscanthus sinensis var. purpurascens. Bioresource Technology 101(10): 3672-3677. https://doi.org/10.1016/j.biortech.2009.12.078
  15. Hodgson, E., D. Nowakowski, I. Shield, A. Riche, A. Bridgwater, J. Clifton-Brown, and I. Donnison, 2010. Variation in Miscanthus chemical composition and implications for conversion by pyrolysis and thermo-chemical biorefining for fuels and chemicals. Bioresource Technology 102(3): 3411-3418.
  16. Kawamoto, H., D. Yamamoto, and S. Saka, 2008. Influence of neutral inorganic chlorides on primary and secondary char formation from cellulose. Journal of Wood Science 54(3): 242-246. https://doi.org/10.1007/s10086-007-0930-8
  17. Kim, J. Y., E. J. Shin, I. Y. Eom, K. Won, Y. H. Kim, D. Choi, I. G. Choi, and J. W. Choi, 2011. Structural featuresof lignin macromolecules extracted with ionic liquid from poplar wood. Bioresource Technology 102(19): 9020-9025. https://doi.org/10.1016/j.biortech.2011.07.081
  18. Kim, W.-K., T. Shim, Y.-S. Kim, S. Hyun, C. Ryu, Y.-K. Park, and J. Jung, 2013. Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresource technology 138: 266-270. https://doi.org/10.1016/j.biortech.2013.03.186
  19. Manya, J. J., E. Velo, and L. Puigjaner, 2003. Kinetics of biomass pyrolysis: a reformulated threeparallel- reactions model. Industrial & engineering chemistry research 42(3): 434-441. https://doi.org/10.1021/ie020218p
  20. Miguez, F. E., M. B. Villamil, S. P. Long, and G. A. Bollero, 2008. Meta-analysis of the effects of management factors on Miscanthus giganteus growth and biomass production. Agricultural and Forest Meteorology 148(8-9): 1280-1292. https://doi.org/10.1016/j.agrformet.2008.03.010
  21. Nowakowski, D. J. and J. M. Jones, 2008. Uncatalysed and potassium-catalysed pyrolysis of the cell- wall constituents of biomass and their model compounds. Journal of Analytical and Applied Pyrolysis 83(1): 12-25. https://doi.org/10.1016/j.jaap.2008.05.007
  22. Okumura, Y. and K. Okazaki, 2009. Pyrolysis and Gasification Experiments of Biomass under Elevated Pressure Condition. Journal of Environment and Engineering 4(1): 24-35. https://doi.org/10.1299/jee.4.24
  23. Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton, 2008. Determination of ash in biomass. Laboratory Analytical Procedures, National Renewable Research Laboratory, Technical Report TP-510-42622, Golden, Co.
  24. Szabó, P., G. Várhegyi, F. Till, and O. Faix, 1996. Thermogravimetric/mass spectrometric characterization of two energy crops, Arundo donax and Miscanthus sinensis. Journal of Analytical and Applied Pyrolysis 36(2): 179-190. https://doi.org/10.1016/0165-2370(96)00931-X
  25. Tan, L. L. and C. Z. Li, 2000. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part II. Effects of experimental conditions on the yields of NOx and SOx precursors from the pyrolysis of a Victorian brown coal. Fuel 79(15): 1891-1897. https://doi.org/10.1016/S0016-2361(00)00079-X
  26. Williams, P.T. and S. Besler, 1996. The influence of temperature and heating rate on the slow pyrolysis of biomass. Renewable Energy 7(3): 233-250. https://doi.org/10.1016/0960-1481(96)00006-7
  27. Wolf, K.J., A. Smeda, M. Müller, and K. Hilpert, 2005. Investigations on the influence of additives for SO2 reduction during high alkaline biomass combustion. Energy & fuels 19(3): 820-824. https://doi.org/10.1021/ef040081a
  28. Woli, K. P., M. B. David, J. Tsai, T. B. Voigt, R. G. Darmody, and C. A. Mitchell, 2011. Evaluating silicon concentrations in biofuel feedstock crops Miscanthus and switchgrass. Biomass and Bioenergy 35(7): 2807-2813. https://doi.org/10.1016/j.biombioe.2011.03.007
  29. Wright, L. 2006. Worldwide commercial development of bioenergy with a focus on energy cropbased projects. Biomass and Bioenergy 30(8-9): 706-714. https://doi.org/10.1016/j.biombioe.2005.08.008
  30. Yaman, S. 2004. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy conversion and management 45(5): 651-671. https://doi.org/10.1016/S0196-8904(03)00177-8
  31. Yang, H., R. Yan, H. Chen, D. H. Lee, and C. Zheng, 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12-13): 1781-1788. https://doi.org/10.1016/j.fuel.2006.12.013

Cited by

  1. Improvement in The Fuel Characteristics of Empty Fruit Bunch by Leaching and Wet Torrefaction vol.44, pp.3, 2016, https://doi.org/10.5658/WOOD.2016.44.3.360
  2. Dissolution Characteristics and Regenerated Miscanthus Sinensis Holocellulose Film Prepared by Dissolving the LiBr Solution vol.47, pp.6, 2015, https://doi.org/10.7584/ktappi.2015.47.6.089