References
- Ango Nze, P. and Doukhan, P. (2004). Weak dependence: Models and applications to econometrics, Econometric Theory, 20, 995-1045.
- Billingsley, P. (1968). Convergence of Probability Measures, Wiley, New York.
- Davidson, J. (2002). Establishing conditions for functional central limit theorem in nonlinear and semiparametric time series processes, Journal of Econometrics, 106, 243-269. https://doi.org/10.1016/S0304-4076(01)00100-2
- Dedecker, J., Doukhan, P., Lang, G., Leon, J. R., Louhichi, S. and Prieur, C. (2007). Weak dependence, Examples and Applications In Springer Lecture Notes in Statistics, 190.
- De Jong, R. M. and Davidson, J. (2000). The functional central limit theorem and weak convergence to stochastic integrals I: weakly dependent processes, Econometric Theory, 16, 643-666. https://doi.org/10.1017/S0266466600165028
- Doukhan, P. and Wintenberger, O. (2007). An invariance principle for weakly dependent stationary general models, Probability and Mathematical Statistics, 27, 45-73.
- Francq, C. and Zakoian, J. M. (2001). Stationarity of multivariate Markov-switching ARMA models, Journal of Econometrics, 102, 339-364. https://doi.org/10.1016/S0304-4076(01)00057-4
- Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and business cycle, Econometrica, 57, 357-384. https://doi.org/10.2307/1912559
- Hamilton, J. D. and Raj, B.(eds) (2002). Advances in Markov-switching Models-Applications in Business Cycle Research and Finance, Physica-Verlag, Heidelberg.
- Harrndorf, N. (1984). A functional central limit theorem for weakly dependent sequences of random variables, The Annals of Probability, 12, 141-153. https://doi.org/10.1214/aop/1176993379
- Ibragimov, I. A. (1962). Some limit theorems for stationary processes, Theory of Probability and Its Applications, 7, 349-382. https://doi.org/10.1137/1107036
- Krolzig, H. M. (1997). Markov-Switching Vector Autoregressions: Lecture Notes in Economics and Mathematical Systems, 454, Springer, Berlin.
- Lee, O. (2005). Probabilistic properties of a nonlinear ARMA process with Markov switching, Communications in Statistics: Theory and Methods, 34, 193-204. https://doi.org/10.1081/STA-200045822
- Stelzer, R. (2009). On Markov-switching ARMA processes-stationarity, existence of moments and geometric ergodicity, Econometric Theory, 29, 43-62.
- Yang, M. (2000). Some properties of vector autoregressive processes with Markov switching coefficients, Econometric Theory, 16, 23-43.
- Yao, J. and Attali, J. G. (2000). On stability of nonlinear AR processes with Markov switching, Advances in Applied Probability, 32, 394-407. https://doi.org/10.1239/aap/1013540170