DOI QR코드

DOI QR Code

An Improvement of the James-Stein Estimator with Some Shrinkage Points using the Stein Variance Estimator

  • Lee, Ki Won (Center for Integrated General Education, Hanyang University) ;
  • Baek, Hoh Yoo (Division of Mathematics and Informational Statistics, Wonkwang University)
  • 투고 : 2013.05.20
  • 심사 : 2013.07.01
  • 발행 : 2013.07.31

초록

Consider a p-variate($p{\geq}3$) normal distribution with mean ${\theta}$ and covariance matrix ${\sum}={\sigma}^2{\mathbf{I}}_p$ for any unknown scalar ${\sigma}^2$. In this paper we improve the James-Stein estimator of ${\theta}$ in cases of shrinking toward some vectors using the Stein variance estimator. It is also shown that this domination does not hold for the positive part versions of these estimators.

키워드

참고문헌

  1. Abramowitz, M. and Stegun, I. A. (1964). Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55, U.S..
  2. Baek, H. Y. and Han, K. H. (2004). Some sequences of improvement over Lindley type estimator, Honam Mathematical Journal, 26, 219-236.
  3. Baranchik, A. J. (1970). A family of minimax estimators of a multivariate normal distribution, Annals of Mathematical Statistics, 41, 642-645. https://doi.org/10.1214/aoms/1177697104
  4. Berry, J. C. (1994). Improving the James-Stein estimator using the Stein variance estimator, Statistics and Probability Letters, 20, 241-245. https://doi.org/10.1016/0167-7152(94)90049-3
  5. George, E. I. (1990). Comment on "Decision theoretic variance estimation", by Maatta and Casella, Statistical Science, 5, 107-109. https://doi.org/10.1214/ss/1177012267
  6. James, W. and Stein, C. (1961). Estimation with quadratic loss, Proceedings of the fourth Berkeley Symposium on Mathematical Statistics and Probability, 1, 361-379.
  7. Kim, B. H., Baek, H. Y. and Chang, I. H. (2002). Improved estimators of the natural parameters in continuous multiparameter exponential families, Communications in Statistics-Theory and Methods, 31, 11-29. https://doi.org/10.1081/STA-120002431
  8. Kim, B. H., Koh, T. W. and Baek, H. Y. (1995). Estimators with nondecreasing risk in a multivariate normal distribution, Journal of the Korean Statistical Society, 24, 257-266.
  9. Lehmann, E. L. and Casella, G. (1999). Theory of Point Estimation, 2nd ed., Springer-Verlag, New York.
  10. Lindley, D. V. (1962). Discussion of Paper by C. Stein, Journal of the Royal Statistical Society, Series B, 24, 265-296.
  11. Maruyama, Y. (1996). Estimation of the mean vector and the variance of a multivariate normal distribution, Master Thesis of Graduate School of Economics, University of Tokyo.
  12. Park, T. R. and Baek, H. Y. (2011). An approach to improving the Lindley estimator, Journal of the Korean Data & Information Science Society, 22, 1251-1256.
  13. Stein, C. (1964). Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean, Annals of the Institute of Statistical Mathematics, 16, 155-160. https://doi.org/10.1007/BF02868569
  14. Stein, C. (1981). Estimation of the mean of a multivariate normal distribution, The Annals of Statistics, 9, 1135-1151. https://doi.org/10.1214/aos/1176345632
  15. Strawderman, W. (1973). Proper Bayes minimax estimators of the multivariate normal mean vector for common unknown variance, Annals of Mathematical Statistics, 6, 1189-1194.