DOI QR코드

DOI QR Code

준안정 오스테나이트계 Fe-18Cr-10Mn-N 합금의 연성-취성 천이 거동에 미치는 Cu와 Ni의 영향

Influence of Cu and Ni on Ductile-Brittle Transition Behavior of Metastable Austenitic Fe-18Cr-10Mn-N Alloys

  • 황병철 (서울과학기술대학교 신소재공학과)
  • Hwang, Byoungchul (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 투고 : 2013.07.09
  • 심사 : 2013.07.19
  • 발행 : 2013.07.27

초록

The influence of Cu and Ni on the ductile-brittle transition behavior of metastable austenitic Fe-18Cr-10Mn-N alloys with N contents below 0.5 wt.% was investigated in terms of austenite stability and microstructure. All the metastable austenitic Fe-18Cr-10Mn-N alloys exhibited a ductile-brittle transition behavior by unusual low-temperature brittle fracture, irrespective of Cu and/or Ni addition, and deformation-induced martensitic transformation occasionally occurred during Charpy impact testing at lower temperatures due to reduced austenite stability resulting from insufficient N content. The formation of deformation-induced martensite substantially increased the ductile-brittle transition temperature(DBTT) by deteriorating low-temperature toughness because the martensite was more brittle than the parent austenite phase beyond the energy absorbed during transformation, and its volume fraction was too small. On the other hand, the Cu addition to the metastable austenitic Fe-18Cr-10Mn-N alloy increased DBTT because the presence of ${\delta}$-ferrite had a negative effect on low-temperature toughness. However, the combined addition of Cu and Ni to the metastable austenitic Fe-18Cr-10Mn-N alloy decreased DBTT, compared to the sole addtion of Ni or Cu. This could be explained by the fact that the combined addition of Cu and Ni largely enhanced austenite stability, and suppressed the formation of deformation-induced martensite and ${\delta}$-ferrite in conjunction with the beneficial effect of Cu which may increase stacking fault energy, so that it allows cross-slip to occur and thus reduces the planarity of the deformation mechanism.

키워드

참고문헌

  1. J. Foct, A. Hendry, Proc. Conf. High Nitrogen Steels (HNS 88), Lille, France, 1988, The Institute of Metals, London (1989).
  2. P. J. Uggowitzer, R. Magdowski, M. O. Speidel, ISIJ Int., 26, 901 (1996).
  3. V. G. Gavriljuk, H. Berns, High Nitrogen Steels, Springer, Berlin (1999).
  4. M. O. Speidel, C. Kowanda, M. Diener, HNS 2003 (High Nitrogen Steels), Schaffhausen, Switzerland, Institute of Metallurgy, ETH, Zurich (2003).
  5. L. P. Karjalainen, T. Taulavuori, M. Sellman, A. Kyrolainen, Steel Res. Int. 79, 404 (2008).
  6. M. A. E. Harzenmoser, R. P. Reed, P. J. Uggowitzer, M. O. Speidel, in High Nitrogen Steels, eds. G. Stein, H. Witulski (Dusseldorf, Germany: Stahl&Eisen, 1990) p.197.
  7. D. Dulieu, J. Nutting, in Metallurgical Developments in High-Alloy Steels, London, The Iron and Steel Institute, Special Report, 86, 140 (1964).
  8. M. Milititsky, D. K. Matlock, A. Regully, N. Dewispelaere, J. Penning, H. Hanninen, Mater. Sci. Eng., A, 496, 189 (2008). https://doi.org/10.1016/j.msea.2008.05.022
  9. T. Tsuchiyama, CAMP-ISIJ, 22, 1148 (2009).
  10. B. Hwang, T-H. Lee, S-J. Park, C-S. Oh, S-J. Kim, Mater. Sci. Eng., A, 528, 7257 (2011). https://doi.org/10.1016/j.msea.2011.06.025
  11. A. Frehn, E. Ratte, W. Bleck, in Proc. 7th Int. Conf. High Nitrogen Steels (GRIPS media GmbH, Ostend, Belgium, Sept. 2004) p. 447
  12. J. Sjoberg, Wire, 23, 155 (1973).
  13. T. Biggs, R. D. Knutsen, Journal de Physique IV, 5, 515 (1995).
  14. T-H. Lee, C-S. Oh, S-J. Kim, Scr. Mater., 58, 110 (2008). https://doi.org/10.1016/j.scriptamat.2007.09.029
  15. J. Talonen, H. Hanninen H, Acta Mater., 55, 6108 (2007). https://doi.org/10.1016/j.actamat.2007.07.015
  16. J. D. Defilippi, K. G. Brickner, E. M. Gilbert, Trans. Metall. Soc. AIME, 245, 2141 (1969).
  17. R. L. Tobler, D. Meyn, Metall. Trans. A, 19, 1626 (1988). https://doi.org/10.1007/BF02674040
  18. Y. Tomota, Y. Xia, K. Inoue, Acta Mater., 46, 1577 (1998). https://doi.org/10.1016/S1359-6454(97)00350-9
  19. S. Hamano, T. Koga, T. Shimizu, T. Katsurai, T. Nishiyama, in Proc. 7th Int. Conf. High Nitrogen Steels (GRIPS media GmbH, Ostend, Belgium, Sept. 2004) p. 411.
  20. S. Narita, S. Hamano, T. Shimizu, T. Noda, in Proc. Int. Conf. High Nitrogen Steels 2006 (Metallurigical Industry Press, Sichuan, China, 2006) p. 174.
  21. J. Bernauer, G. Saller, M. O. Speidel, in Proc. 7th Int. Conf. High Nitrogen Steels (GRIPS media GmbH, Ostend, Belgium, Sept. 2004). p. 529.
  22. R. G. Stringfellow, D. M. Parks, G. B. Olson, Acta Metall. Mater., 40, 1703 (1992). https://doi.org/10.1016/0956-7151(92)90114-T
  23. B. M. Gonzalez, C. S. B. Castro, V. T. L. Buono, J. M. C. Vilela, M. S. Andrade, J. M. D. Moraes, M. J. Mantel, Mater. Sci. Eng., A, 343, 51 (2003). https://doi.org/10.1016/S0921-5093(02)00362-3