DOI QR코드

DOI QR Code

Microstructure and Biocompatibility of Ti-Nb-Si-HA Composites Fabricated by Rapid Sintering Using HEMM Powders

  • Woo, Kee-Do (Division of Advanced Materials Engineering, Research Center of Advanced Materials Development(RCAMD), Chonbuk National University) ;
  • Kim, Sang-Hyuk (Chonbuk National University) ;
  • Kang, Dong-Soo (Chonbuk National University) ;
  • Kim, Dong-Gun (Chonbuk National University)
  • Received : 2013.05.10
  • Accepted : 2013.06.27
  • Published : 2013.07.27

Abstract

To improve coating ability and the life of the coating, Ti based composite materials with hydroxyapatite(HA) should be developed. The raw materials of Ti-26wt%, Nb-1wt%, and Si with 10wt% HA were mixed for 24 h by a mixing machine and milled for 1 h to 6 h by planetary mechanical ball milling. Ti-26%Nb-1%Si-(10%HA) composites, composed of nontoxic elements, were fabricated successfully by spark plasma sintering(SPS) at $1000^{\circ}C$ under 70MPa. The relative density of the sintered Ti-Nb-Si-HA composites using the 24 h mixed powder, and the 6 h milled powder, was 91% and 97 %, respectively. The effects of HA contents and milling time on microstructure and mechanical properties were investigated by SEM and hardness tester, respectively. The Vickers hardness of the composites increased with increasing milling time and higher HA content. The Young's modulus of the sintered Ti-26%Nb-1%Si-10%HA composite using the 6 h-milled powder was 55.6 GPa, as obtained by compression test. Corrosion resistance of the Ti-26wt%Nb-1wt%Si composite was increased by milling and by the addition of 10wt%HA. Wear resistance was improved with increasing milling time. Biocompatibility of the Ti-Nb-Si alloys was improved by the addition of HA.

Keywords

References

  1. M. Long and H. J. Rack, Biomater., 19, 1621 (1998). https://doi.org/10.1016/S0142-9612(97)00146-4
  2. H. S. Kim, W. Y. Kim and S.H. Lim, Scripta Mater., 54, 887 (2006). https://doi.org/10.1016/j.scriptamat.2005.11.001
  3. E. Takahashi, T. Sakurai, S. Watanabe, N. Masahashi, and S. Hanada, Mater. Trans. 43, 2978 (2002). https://doi.org/10.2320/matertrans.43.2978
  4. L. M. Elias, S. G. Schneider, S. Schneider, H. M. Silva and F. Malvisi, Mater. Sci. Eng., A432, 108 (2006).
  5. H. S. Kim, S. H. Lim, I. D. Yeo and W. Y. Kim, Mater. Sci. Eng., A449-451, 322 (2007).
  6. S. Ishiyama. S. Hanada and O. Izumi, ISIJ Inter., 31, 807 (1991). https://doi.org/10.2355/isijinternational.31.807
  7. P. Laheurte, A. Eberhardt and M. J. Philippe, Mater. Sci. Eng., A396, 223 (2005).
  8. S. Nag, R. Banerjee and H. L. Fraser, Acta Biomater., 3, 369 (2007). https://doi.org/10.1016/j.actbio.2006.08.005
  9. Y. L. Hao, S. J. Li, S.Y. Sun, R. Yang, Mater. Sci. Eng., A441, 112 (2006).
  10. R. Gadow, A. Killinger, N. Stiegler, Surf. Coat. Technol., 205, 1157 (2010) https://doi.org/10.1016/j.surfcoat.2010.03.059
  11. C. Renghini, E. Girardin, A. S. Fomine, A. Manescu, A. Sabbioni, S. M. Barinov, V. S. Komlev, G. Albertini, F. Fiori, Mater. Sci. Eng., B152, 86 (2008).
  12. Kee-Do Woo, Xiaopeng Wang, Duck-Soo Kang, Sang-Hyuk Kim, Jeong-Nam Woo, Sang-Hoon Park and Zhiguang Liu, J.Kor. Powd. Metall.Inst., 17, 443 (2010). https://doi.org/10.4150/KPMI.2010.17.6.443
  13. W. D. Woo, H. B. Lee, I. Y. Kim, I. J. Shon, and D. L. Zhang, Met. Mater. Int., 14, 327 (2008). https://doi.org/10.3365/met.mat.2008.06.327
  14. Sang-Hoon Park, Kee-Do Woo, Ji-Young Kim and Sang-Mi Kim, Kor, J.Met. Mater., 50, 469 (2012). https://doi.org/10.3365/KJMM.2012.50.6.469
  15. Kee Do Woo, Sang Mi Kim, Dong Gun Kim, Dae Young Kim and Dong Soo Kang, Kor.J.Mater. Res., 23(2), 135 (2013). https://doi.org/10.3740/MRSK.2013.23.2.135
  16. C. Suryanarayana, M. Grant Norton, X-ray Diffraction : A Practical Approach, Plenum Press, New York, p. 207-213 (1988).
  17. E. Champion, Acta Biomaterialia, 9(4), 5855 (2013). https://doi.org/10.1016/j.actbio.2012.11.029
  18. Y. M. Zhang, Mast Thesis, Harbin Institute of Technology in China, (2007).
  19. Abdel-Nasser Omran, Kee-Do Woo and Hyun-Bom Lee, Metall. Mater. Trans., 43A(12), 3865 (2012).
  20. Y. H. Hon, E. Y. Wu and Y. N. Pan, Proceeding of the 9th Aasian Foundary Congress, Hanoi, Vietnam, 2005, p. 129-141.
  21. C. Q. Ning, Y. Zhou, Biomater.. 23, 2911 (2002).
  22. K. D. Woo, D. S. Kang, M. S. Moon, S. H. Kim, S. H. Park and I. J. Shon, Mater. Tech., 27(1), 39 (2012). https://doi.org/10.1179/175355511X13240279340804
  23. Sang Hoon Park, Kee Do Woo, Sang Hyuk Kim, Seung Min Lee, Ji Young Kim, Hye Rim Ko and Sang Mi Kim, Kor. J. Mater. Res., 21(7), 384 (2011). https://doi.org/10.3740/MRSK.2011.21.7.384

Cited by

  1. Microstructure and Mechanical Properties of Nano-Carbon Reinforced Titanium Matrix/Hydroxyapatite Biocomposites Prepared by Spark Plasma Sintering vol.8, pp.9, 2018, https://doi.org/10.3390/nano8090729
  2. Research Progress Regarding Interfacial Characteristics and the Strengthening Mechanisms of Titanium Alloy/Hydroxyapatite Composites vol.11, pp.8, 2018, https://doi.org/10.3390/ma11081391