DOI QR코드

DOI QR Code

Isolation of Iron-Binding Peptides from Sunflower (Helianthus annuus L.) Seed Protein Hydrolysates

해바라기씨박 단백질 가수분해물로부터 철분 결합 펩타이드의 분리

  • Choi, Dong Won (Dept. of Food Science and Technology, Chungnam National University) ;
  • Kim, Nam Ho (Dept. of Food Science and Technology, Chungnam National University) ;
  • Son, Kyung Bin (Dept. of Food Science and Technology, Chungnam National University)
  • Received : 2013.03.05
  • Accepted : 2013.04.24
  • Published : 2013.07.31

Abstract

Proteins from sunflower seeds were hydrolyzed with Alcalase and Flavourzyme to isolate iron-binding peptides. The optimal hydrolysis conditions were determined. Hydrolysates were filtered under a 3 kDa membrane and iron-binding peptides separated from the hydrolysates using ion exchange and gel permeation chromatographic methods. A fraction with the highest iron-binding activity (Fe/peptide, 0.69), F22, was obtained. These results suggest that fractions isolated from sunflower seed protein hydrolysates can be applied toward the production of iron supplements.

해바라기씨박 단백질 가수분해물로부터 철분 결합 펩타이드를 분리하기 위해 해바라기씨박 단백질을 단백 가수분해 효소인 alcalase와 flavourzyme을 이용하여 가수분해하였고, 가수분해물을 3 kDa 이하로 한외여과를 하였다. 한외여과된 가수분해물은 QAE Sephadex$^{TM}$ A-25 column과 Superdex$^{TM}$ peptide 10/300 GL column을 사용하여 철분 결합 펩타이드를 분리하였고, 분리된 분획 중 철분 결합력이 가장 높은 F22를 얻었다. 본 연구에서 얻어진 해바라기씨박 단백질 가수분해물로부터 분리된 분획들은 향후 기능성식품 소재 원료로 사용될 수 있다고 판단된다.

Keywords

References

  1. Villanueva A, Vioque J, Sanchez-Vioque R, Clemente A, Bautista J, Millan F. 1999. Production of an extensive sunflower protein hydrolysate by sequential hydrolysis with endo- and exo-proteases. Grasas Y Aceites 50: 472-476. https://doi.org/10.3989/gya.1999.v50.i6.697
  2. Megias C, del Mar Yust M, Pedroche J, Lquari H, Giron-Calle J, Alaiz M, Millan F, Vioque J. 2004. Purification of an ACE inhibitory peptide after hydrolysis of sunflower (Helianthus annuus L.) protein isolates. J Agric Food Chem 52: 1928-1932. https://doi.org/10.1021/jf034707r
  3. Gonzalez-Perez S, Vereijken JM. 2007. Sunflower proteins: overview of their physicochemical, structural and functional properties. J Sci Food Agric 87: 2173-2191. https://doi.org/10.1002/jsfa.2971
  4. Molina MI, Petruccelli S, Anon MC. 2004. Effect of pH and ionic strength modifications on thermal denaturation of the 11S globulin of sunflower (Helianthus annuus). J Agric Food Chem 52: 6023-6029. https://doi.org/10.1021/jf0494175
  5. Villanueva A, Vioque J, Sanchez-Vioque R, Clemente A, Pedroche J, Bautista J, Millan F. 1999. Peptide characteristics of sunflower protein hydrolysates. J Am Oil Chem Soc 76: 1455-1460. https://doi.org/10.1007/s11746-999-0184-2
  6. Kitts DD, Weiler K. 2003. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Des 9: 1309-1323. https://doi.org/10.2174/1381612033454883
  7. Roberts PR, Burney JD, Black KW, Zaloga GP. 1999. Effect of chain length on absorption of biologically active peptides from the gastrointestinal tract. Digestion 60: 332-337. https://doi.org/10.1159/000007679
  8. Korhonen H, Pihlanto A. 2006. Bioactive peptides: production and functionality. Int Dairy J 16: 945-960. https://doi.org/10.1016/j.idairyj.2005.10.012
  9. Sheih IC, Wu TK, Fang TJ. 2009. Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresour Technol 100: 3419-3425. https://doi.org/10.1016/j.biortech.2009.02.014
  10. Kim SY, Kim SH, Song KB. 2003. Purification of an ACE inhibitory peptide from hydrolysates of duck meat protein. Nutraceuticals & Food 8: 66-69. https://doi.org/10.3746/jfn.2003.8.1.066
  11. Mine Y, Ma F, Lauriau S. 2004. Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme. J Agric Food Chem 52: 1088-1094. https://doi.org/10.1021/jf0345752
  12. Gauthier SF, Pouliot Y, Saint-Sauveur D. 2006. Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. Int Dairy J 16: 1315-1323. https://doi.org/10.1016/j.idairyj.2006.06.014
  13. Zhong F, Liu J, Ma J, Shoemaker CF. 2007. Preparation of hypocholesterol peptides from soy protein and their hypocholesterolemic effect in mice. Food Res Int 40: 661-667. https://doi.org/10.1016/j.foodres.2006.11.011
  14. Lee SH, Song KB. 2009. Purification of an iron-binding nona-peptide from hydrolysates of porcine blood plasma protein. Process Biochem 44: 378-381. https://doi.org/10.1016/j.procbio.2008.12.001
  15. Megias C, Pedroche J, Yust MM, Giron-Calle J, Alaiz M, Millan F, Vioque J. 2007. Affinity purification of copperchelating peptides from sunflower protein hydrolysates. J Agric Food Chem 55: 6509-6514. https://doi.org/10.1021/jf0712705
  16. Gaucheron F. 2000. Iron fortification in dairy industry. Trends Food Sci Technol 11: 403-409. https://doi.org/10.1016/S0924-2244(01)00032-2
  17. Ponka P, Beaumont C, Richardson DR. 1998. Function and regulation of transferrin and ferritin. Semin Hematol 35: 35-54.
  18. Hurrell R, Egli I. 2010. Iron bioavailability and dietary reference values. Am J Clin Nutr 91: 1461S-1467S. https://doi.org/10.3945/ajcn.2010.28674F
  19. Torres-Fuentes C, Alaiz M, Vioque J. 2011. Affinity purification and characterization of chelating peptides from chickpea protein hydrolysates. Food Chem 129: 485-490. https://doi.org/10.1016/j.foodchem.2011.04.103
  20. Hagenmaier FD. 1974. Aqueous processing of full-fat sunflower seeds: Yields of oil and protein. J Am Oil Chem Soc 51: 470-471. https://doi.org/10.1007/BF02635157
  21. Lee JH, Choi DW, Song KB. 2012. Isolation of calciumbinding peptides from barley protein hydrolysates. Korean J Food Preserv 19: 438-442. https://doi.org/10.11002/kjfp.2012.19.3.438
  22. Eklund A. 1976. On the determination of available lysine in casein and rapeseed protein concentrates using 2,4,6-trinitrobenzenesulphonic acid (TNBS) as a reagent for free epsilon amino group of lysine. Anal Biochem 70: 434-439. https://doi.org/10.1016/0003-2697(76)90467-X
  23. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685. https://doi.org/10.1038/227680a0
  24. Harris DC. 1995. Quantitative chemical analysis. 4th ed. W. H. Freeman and Company, New York, NY, USA. p 804-805.
  25. Korhonen H, Pihlanto A. 2003. Food-derived bioactive peptides- opportunities for designing future foods. Curr Pharm Des 9: 1297-1308. https://doi.org/10.2174/1381612033454892
  26. Jeon SJ, Lee JH, Song KB. 2010. Preparation for calcium and iron-binding peptides from rice bran protein hydrolysates. J Appl Biol Chem 53: 174-178. https://doi.org/10.3839/jabc.2010.031
  27. Choi DW, Kim NH, Song KB. 2012. Isolation of iron and calcium-binding peptides from cottonseed meal protein hydrolsates. J Appl Biol Chem 55: 263-266. https://doi.org/10.3839/jabc.2012.041
  28. Jung WK, Lee BJ, Kim SK. 2006. Fish-bone peptide increases calcium solubility and bioavailability in ovariectomised rats. Br J Nutr 95: 124-128. https://doi.org/10.1079/BJN20051615
  29. Lv Y, Liu Q, Bao X, Tang W, Yang B, Guo S. 2009. Identification and characteristics of iron-chelating peptides from soybean protein hydrolysates using IMAC-$Fe^{3+}$. J Agric Food Chem 57: 4593-4597. https://doi.org/10.1021/jf9000204
  30. Storcksdieck genannt Bonsmann S, Hurrell RF. 2007. Ironbinding properties, amino acid composition, and structure of muscle tissue peptides from in vitro digestion of different meat sources. J Food Sci 72: S019-S029. https://doi.org/10.1111/j.1750-3841.2006.00229.x
  31. Conde JM, Escobar Mdel M, Pedroche Jiménez JJ, Rodriguez FM, Rodriguez Patino JM. 2005. Effect of enzymatic treatment of extracted sunflower proteins on solubility, amino acid composition, and surface activity. J Agric Food Chem 53: 8038-8045. https://doi.org/10.1021/jf051026i

Cited by

  1. Purification of an iron-chelating peptide from spirulina protein hydrolysates vol.57, pp.1, 2014, https://doi.org/10.1007/s13765-013-4211-5