References
- Balima F, Pischedda V, Le Floch S, Brulet A, Lindner P, Duclaux L, San-Miguel A. An in situ small angle neutron scattering study of expanded graphite under a uniaxial stress. Carbon, 57, 460 (2013). http://dx.doi.org/10.1016/j.carbon.2013.02.019.
- Dittrich B, Wartig KA, Hofmann D, Mulhaupt R, Schartel B. Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stab, 98, 1495 (2013). http://dx.doi.org/10.1016/j.polymdegradstab.2013.04.009.
- Park SJ, Kim KS. A study on oil adsorption of expanded graphites. Korean Chem Eng Res, 42, 362 (2004).
- Park SJ, Kim KS, Hong SK. Preparation and characterization of expanded graphites by wet process. Hwahak Konghak, 41, 802 (2003).
- Ajalesh Balachandran N, Philip K, Rani J. Effect of expanded graphite on thermal, mechanical and dielectric properties of ethylene-propylene-diene terpolymer/hexa fluoropropylene-vinylidinefluoride dipolymer rubber blends. Eur Polym J, 49, 247 (2013). http://dx.doi.org/10.1016/j.eurpolymj.2012.08.014.
- Sever K, Tavman IH, Seki Y, Turgut A, Omastova M, Ozdemir I. Electrical and mechanical properties of expanded graphite/high density polyethylene nanocomposites. Composites B, 53, 226 (2013). http://dx.doi.org/10.1016/j.compositesb.2013.04.069.
- Piana F, Pionteck J. Effect of the melt processing conditions on the conductive paths formation in thermoplastic polyurethane/expanded graphite (TPU/EG) composites. Compos Sci Technol, 80, 39 (2013). http://dx.doi.org/10.1016/j.compscitech.2013.03.002.
- Toyoda M, Inagaki M. Heavy oil sorption using exfoliated graphite: new application of exfoliated graphite to protect heavy oil pollution. Carbon, 38, 199 (2000). http://dx.doi.org/10.1016/S0008-6223(99)00174-8.
- Zheng YP, Wang HN, Kang FY, Wang LN, Inagaki M. Sorption capacity of exfoliated graphite for oils-sorption in and among wormlike particles. Carbon, 42, 2603 (2004). http://dx.doi.org/10.1016/j.carbon.2004.05.041.
- Wang LW, Tamainot-Telto Z, Metcalf SJ, Critoph RE, Wang RZ. Anisotropic thermal conductivity and permeability of compacted expanded natural graphite. Appl Therm Eng, 30, 1805 (2010). http://dx.doi.org/10.1016/j.applthermaleng.2010.04.014.
- Krawczyk P. Effect of ozone treatment on properties of expanded graphite. Chem Eng J, 172, 1096 (2011). http://dx.doi.org/10.1016/j.cej.2011.06.005.
-
Jihui L, Huifang D, Qian L, Shufen L. Preparation of sulfur-free expanded graphite with
$320\;{\mu}m$ mesh of flake graphite. Mater Lett, 60, 3927 (2006). http://dx.doi.org/10.1016/j.matlet.2006.06.066. - Li S, Tian S, Du C, He C, Cen C, Xiong Y. Vaseline-loaded expanded graphite as a new adsorbent for toluene. Chem Eng J, 162, 546 (2010). http://dx.doi.org/10.1016/j.cej.2010.05.059.
- Li S, Tian S, Feng Y, Lei J, Wang P, Xiong Y. A comparative investigation on absorption performances of three expanded graphitebased complex materials for toluene. J Hazard Mater, 183, 506 (2010). http://dx.doi.org/10.1016/j.jhazmat.2010.07.052.
Cited by
- A review: methane capture by nanoporous carbon materials for automobiles vol.17, pp.1, 2016, https://doi.org/10.5714/CL.2016.17.1.018