DOI QR코드

DOI QR Code

Application of the Width Function Instantaneous Unit Hydrograph: A Case Study of Cheongmi River

폭함수 단위도법을 이용한 청미천 수문곡선 산정

  • 서용원 (서울대학교 공과대학 건설환경공학부) ;
  • 박준형 (서울대학교 공과대학 건설환경공학부) ;
  • 이동섭 (한국건설기술연구원) ;
  • 김영오 (서울대학교 공과대학 건설환경공학부)
  • Received : 2013.02.14
  • Accepted : 2013.04.30
  • Published : 2013.07.30

Abstract

This paper examines the applicability of the Width Function Instantaneous Unit Hydrograph (WFIUH) with a case study of Cheongmi River in South Korea. The parameter values of WFIUH can be physically determined compared to the lumped hydrologic models, which are typically accompanied by parameter estimation procedures with gage records. Assuming uniformly distributed rainfall, the hydrographs obtained with the WFIUH show good agreement with observed data and also the results from HEC-1. A simple investigation of the effect from the rainstorm movement with the WFIUH demonstrates the ability of the proposed model and the need to consider the rainstorm movement effect on the resulting hydrographs for prediction purposes.

본 연구에서는 폭함수(width function)에 기초한 단위도법(WFIUH)을 이용하는 수문곡선 산정방법에 대하여 소개하고 실제 유역(청미천)에 적용하여 그 적용성을 검토하였다. 기존 집중형 모형과 비교하여 WFIUH는 매개변수를 물리적으로 결정할 수 있는 특징이 있으며 준분포형 모형으로 유역특성 및 강우의 시공간적 변동성을 수문곡선 산정에 반영할 수 있는 장점이 있다. 공간적으로 균등한 강우를 가정하여 청미천 유역에 적용한 결과 관측치와 잘 일치하는 것을 알 수 있었으며 범용 모형인 HEC-1와 비교하여 유사한 결과를 보이는 것으로 나타났다. 또한 이동강우에 대한 간단한 검토사례를 통해 WFIUH를 이용하여 강우이동이 수문곡선의 모양과 첨두유량에 미치는 영향을 평가할 수 있는 것을 보였다.

Keywords

References

  1. Ahn, S.-S., Kim, D.-H., Heo, C.-H. and Park, J.-K. (2002). "Analysis of GIUH model using river branching characteristic factors." Journal of the Korean Association of Geographic Information Studies, Vol. 5, No. 4, pp. 9-23.
  2. Choi, Y.-J., Kim, J.-C. and Jeong, D.-K. (2010). "Development of synthetic unit hydrograph for estimation of runoff in ungauged watershed." Journal of Korean Society of Water Quality, Vol. 26, No. 3, pp. 532-539.
  3. Choi, H.-S., Park, C.-S. and Moon, H.-G. (2006). "A study on rainfall- runoff ana1ysis by geomorphological instantaneous unit hydrograph (GIUH)." Journal of Korean Society of Hazard Mitigation, Vol. 6, No. 1, pp. 49-58.
  4. Da Ros, D. and Borga, M. (1997). "Use of digital elevation model data for the derivation of the geomorphological instantaneous unit hydrograph." Hydrological Processes, Vol. 11, No. 1, pp. 13-33. https://doi.org/10.1002/(SICI)1099-1085(199701)11:1<13::AID-HYP400>3.0.CO;2-M
  5. Di Lazzaro, M. (2009). "Regional analysis of storm hydrographs in the rescaled width function framework." Journal of Hydrology, Vol. 373, No. 3, pp. 352-365. https://doi.org/10.1016/j.jhydrol.2009.04.027
  6. Franchini, M. and OConnell, P. E. (1996). "An analysis of the dynamic component of the geomorphologic instantaneous unit hydrograph." Journal of Hydrology, Vol. 175, No. 1, pp. 407-428. https://doi.org/10.1016/S0022-1694(96)80018-7
  7. Gupta, V. K. and Waymire, E. (1983). "On the formulation of an analytical approach to hydrologic response and similarity at the basin scale." Journal of Hydrology, Vol. 65, No. 1, pp. 95-123. https://doi.org/10.1016/0022-1694(83)90212-3
  8. Gupta, V. K., Waymire, E. and Wang, C. T. (1980). "A representation of an instantaneous unit-hydrograph from geomorphology." Water Resources Research, Vol. 16, No. 5, pp. 855-862. https://doi.org/10.1029/WR016i005p00855
  9. Ham, D.-H., Joo, J.-G., Jun, H.-D. and Kim, J.-H. (2008). "Study on derivation of fourth-order GIUH and revision of initial state probability." Journal of the Korea Water Resources Association, Vol. 41, No. 2, pp. 229-239. https://doi.org/10.3741/JKWRA.2008.41.2.229
  10. Heo, C.-H. and Lee, S.-T. (2002). "Analysis of GIUH model by using GIS in river basin." Journal of the Korea Water Resources Association, Vol. 35, No. 3, pp. 321-330. https://doi.org/10.3741/JKWRA.2002.35.3.321
  11. Joo, J.-G., Yang, J.-M. and Kim, J.-H. (2011). "GIUH Variation by estimating locations." Journal of Korean Society of Hazard Mitigation, Vol. 11, No. 1, pp.85-91. https://doi.org/10.9798/KOSHAM.2011.11.1.085
  12. Kim, J.-C., Choi, Y.-J. and Jeong, D.-K. (2011). "Suggestion of synthetic unit hydrograpph method considering hydrodynamic characteristic on the basin." Journal of the Korea Water Resources Association, Vol. 31, No. 1B, pp. 47-55.
  13. Kim, S.-J., Kwon, H.-J., Jung, I.-K. and Park, G.-A. (2003). "A comparative study on grid-based storm mrunoff prediction using Thiessen and spatially distributed rainfall." Paddy Water Enrionment, Vol. 1, No. 3, pp. 149-155. https://doi.org/10.1007/s10333-003-0023-2
  14. Kim, K.-W., Rho, J.-H., Jeon, Y.-W. and Yoo, C. (2003). "Analysis of rainfall effect on the GIUH characteristic velocity." Journal of the Korea Water Resources Association, Vol. 36, No. 4, pp. 533-535. https://doi.org/10.3741/JKWRA.2003.36.4.533
  15. Lashermes, B., Foufoula-Georgiou, E. and Dietrich, W. E. (2007). "Channel network extraction from high resolution topography using wavelets." Geophysical Research Letters, Vol. 34, L23S04, doi:10.1029/2007GL031140.
  16. Lee, M. T. and Delleur, J. W. (1976). "A variable source area model of the rainfall-runoff process based on the watershed stream network." Water Resources Research, Vol. 12, No. 5, pp. 1029-1036. https://doi.org/10.1029/WR012i005p01029
  17. Lee, S.-T. and Park, J.-K. (1987). "GIUH model for river runoff estimation." Journal of the Korea Water Resources Association, Vol. 20, No. 4, pp. 267-278.
  18. Mesa, O. J. and Mifflin, E. R. (1986). "On the relative role of hillslope and network geometry in hydrologic response." In: V. Gupta, Rodriguez-Iturbe, I, and Wood, E. (Editors), Scale problems in hydrology. D. Reidel, Dordrecht.
  19. Ministry of Construction and Maritime Affairs (2011). Base developement plan of the Cheongmi River Basin (Revised), No. 11- 1611347-000015-01.
  20. Moussa, R. (2008a). "Effect of channel network topology, basin segmentation and rainfall spatial distribution on the geomorphologic instantaneous unit hydrograph transfer function." Hydrological Processes, Vol. 22, No. 3, pp. 395-419. https://doi.org/10.1002/hyp.6612
  21. Moussa, R. (2008b). "What controls the width function shape, and can it be used for channel network comparison and regionalization?" Water Resources Research, Vol. 44, No. 8, pp. 1-19.
  22. Naden, P. S. (1992). "Spatial variability in flood estimation for large catchments - the exploitation of channel network structure." Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, Vol. 37, No. 1, pp. 53-71. https://doi.org/10.1080/02626669209492561
  23. Rodriguez-iturbe, I. and Valdes, J. B. (1979). "Geomorphologic structure of hydrologic response." Water Resources Research, Vol. 15, No. 6, pp. 1409-1420. https://doi.org/10.1029/WR015i006p01409
  24. Seo, Y. (2012) The effect of rainstorm movement on urban drainage network runoff hydrographs, Dissertation, University of Illinois at Urbana-Champaign, Urbana, Illinois.
  25. Seo, Y., Schmidt, A. R. and Sivapalan, M. (2012). "Effect of storm movement on flood peaks: Analysis framework based on characteristic timescales." Water Resources Research, Vol. 48, No. 5, W05532, doi:10.1029/2011WR011761
  26. Singh, V. P. (1997). "Effect of spatial and temporal variability in rainfall and watershed characteristics on stream flow hydrograph." Hydrological Processes 11: 1649-1669. https://doi.org/10.1002/(SICI)1099-1085(19971015)11:12<1649::AID-HYP495>3.0.CO;2-1
  27. Strahler, A. N. (1957). "Quantitative analysis of watershed geomorphology." EOS, Transactions AGU, Vol. 38, pp. 913-920. https://doi.org/10.1029/TR038i006p00913
  28. Troutman, B. M. and Karlinger, M. R. (1985). "Unit-hydrograph approximations assuming linear flow through topologically random channel networks." Water Resources Research, Vol. 21, No. 5, pp. 743-754. https://doi.org/10.1029/WR021i005p00743
  29. Van de Nes, T. J. (1973). Linear analysis of a physically based model of a distributed surface runoff system, The Netherlands: Wageningen.