DOI QR코드

DOI QR Code

Computer Aided Design of RC Structures

  • Islam, S.M. Shahidul (School of Engineering and Information Technology, The University of New South Wales) ;
  • Khennane, A. (School of Engineering and Information Technology, The University of New South Wales)
  • Received : 2012.08.05
  • Accepted : 2012.12.31
  • Published : 2013.06.30

Abstract

After reviewing the background and motivations for using modern computational methods for the design of reinforced concrete structures, an algorithm making use of the object oriented programming language Python and professionally developed finite element software is presented for the sizing and placement of the reinforcement in RC structures. The developed method is then used to design the reinforcement of a deep beam. To validate the design, two identical deep beam specimens were manufactured with the obtained steel, and then tested in the laboratory. It was found that the experimental results corroborated those predicted with the finite element design method.

Keywords

References

  1. An, X., & Maekawa, K. (2004). Computer aided reinforcement design of RC structures. Computers and Concrete, 1(1), 15-30. https://doi.org/10.12989/cac.2004.1.1.015
  2. ASCE. (1982). Report on finite element analysis of reinforced concrete. New York: ASCE Special Publications.
  3. Bazant, Z., & Oh, B. (1983). Crack band theory for fracture of concrete. Materials and Structures, RILEM, 16, 155-176.
  4. Chen, W. (1976). Plasticity in reinforced concrete. New York: McGraw-Hill.
  5. Cope R. J., Rao P. V., Clark. L. A., & Norris. P. (1980). Modelling of reinforced concrete behaviour for finite element analysis of bridge slabs. In C. Taylor, E. Hinton, D. R. J. Owen (Eds.), Numerical methods for non-linear problems (pp. 457-470). Swansea, UK:Pineridge Press.
  6. de Borst, R. (2002). Fracture in quasi-brittle materials: A review of continuum damage-based approaches. Engineering Fracture Mechanics, 69, 95-112. https://doi.org/10.1016/S0013-7944(01)00082-0
  7. de Borst, R., & Nauta, P. (1985). Non-orthogonal cracks in a smeared finite element model. Engineering Computations, 2, 35-46. https://doi.org/10.1108/eb023599
  8. Gupta, A., & Akbar, H. (1983). A finite element for the analysis of reinforced concrete structures. International Journal for Numerical Method in Engineering, 19, 1705-1712. https://doi.org/10.1002/nme.1620191109
  9. Hillerborg, A. (1976). Analysis of crack formation and growth in concrete by means of fracture mechanics and finite element. Cement and Concrete Research, 6(6), 773-782. https://doi.org/10.1016/0008-8846(76)90007-7
  10. Hoogenboom, P. C. J. (1998). Discrete elements and nonlinearity in design of structural concrete walls. PhD thesis, Delft University of Technology, Delft, Netherlands.
  11. Hordijk, D. A. (1991). Local approach to fatigue of concrete. PhD thesis, Delft University of Technology, Delft, Netherlands.
  12. Hu, H. T., & Lin, Y. (2006). Ultimate analysis of PWR prestressed concrete containment subjected to internal pressure. International Journal of Pressure Vessels and Piping, 83, 161-167. https://doi.org/10.1016/j.ijpvp.2006.02.030
  13. Khelifa, M., Oudjene, M., & Khennane, A. (2007). Fracture in sheet metal forming: Effect of ductile damage evolution. Computers & Structures, 85(3/4), 205-212. https://doi.org/10.1016/j.compstruc.2006.08.053
  14. Khennane, A. (2005). Performance design of reinforced concrete slabs using commercial finite element software. Structural Concrete, 6(4), 141-147. https://doi.org/10.1680/stco.2005.6.4.141
  15. Kotsovos, M. D., & Newman, J. B. (1977). Behaviour of concrete under multiaxial stress. ACI Journal, 74(9), 443-446.
  16. Kupfer, H. B., Hildorf, H. K., & Rusch, H. (1969). Behavior of concrete under biaxial stresses. ACI Journal, 66(8), 656-666.
  17. Lee, J., & Fenves, G. L. (1998). Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, ASCE, 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
  18. Lubliner, J., Oliver, J., Oller, S., & Onate, E. (1989). A plasticdamage model for concrete. International Journal of Solids and Structure, 25(3), 229-326.
  19. Malm, R. (2006). Shear crack in concrete structures subjected to in-plane stresses. Licentiate thesis, Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
  20. Mazars, J. (1984). Application de la mecanique de l'endommagement au comportement non lineaire et a la rupture du beton de structure. These d'etat, Universite Paris VI, Paris, France (in French).
  21. Mazars, J., & Pijaudier-Cabot, G. (1989). Continuum damage theory: Application to concrete. Journal of Engineering Mechanics, ASCE, 115(2), 345-365. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:2(345)
  22. Mercan, B., Schultz, A. E., & Stolarski, H. K. (2010). Finite element modeling of prestressed concrete spandrel beams. Engineering Structures, 32, 2804-2813. https://doi.org/10.1016/j.engstruct.2010.04.049
  23. Ngo, D., & Scordelis, A. C. (1967). Finite element analysis of reinforced concrete beams. ACI Journal, 64(3), 152-163.
  24. Ottosen, N. S. (1977). A failure criterion for concrete. Journal of Engineering Mechanics, ASCE, 103(4), 527-535.
  25. Palaniswamy, R., & Shah, S. (1974). Fracture and stress-strain relationship of concrete under triaxial compression. Journal of Structural Engineering, ASCE, 100(5), 901-915.
  26. Python Software Foundation. (2011). Python 2.6. Retrieved August 14, 2011, from http://www.python.org.
  27. Rashid, Y. R. (1968). Analysis of prestressed concrete pressure vessels. Nuclear Engineering and Design, 7(4), 334-344. https://doi.org/10.1016/0029-5493(68)90066-6
  28. Rots, J. G. (1988). Computational modeling of concrete fracture. PhD thesis, Delft University of Technology, Delft, Netherlands.
  29. Simulia. (2011). Abaqus documentation version 6.10. Retrieved September 10, 2011, from http://www.simulia.com.
  30. Syroka, E., Bobinski, J., & Tejchman, J. (2011). FE analysis of reinforced concrete corbels with enhanced continuum models. Finite Element in Analysis and Design, 47, 1066-1078. https://doi.org/10.1016/j.finel.2011.03.022
  31. Tabatai, S. M. R., & Mosalam, K. M. (2001). Computational platform for non-linear analysis/optimal design of reinforced concrete structures. Engineering Computations, 18(5), 726-743. https://doi.org/10.1108/EUM0000000005785
  32. Tanimura, Y., & Sato, T. (2005). Evaluation of shear strength of deep beams with stirrups. Quarterly Report of Railway Technical Research Institute, Japan, 46(1), 53-56.
  33. Vecchio, F., & Collins, M. (1982). The response of reinforced concrete to in-plane shear and normal stress, No. 82-03, Department of Civil Engineering, University of Toronto, Toronto, Canada.
  34. Wee, T. H., Chin, M. S., & Mansur, M. A. (1996). Stress-strain relationship of high-strength concrete in compression. Journal of Materials in Civil Engineering, 8(2), 70-76. https://doi.org/10.1061/(ASCE)0899-1561(1996)8:2(70)
  35. Willam, K. J., & Warnke, E. P. (1975). Constitutive models for the triaxial behavior of concrete. Proceedings of International Association for Bridge and Structural Engineering, 19, 1-30.

Cited by

  1. Thermo-mechanical analysis of road structures used in the on-line electric vehicle system vol.53, pp.3, 2013, https://doi.org/10.12989/sem.2015.53.3.519
  2. Analytical performance evaluation of modified inclined studs for steel plate concrete wall subjected to cyclic loads vol.17, pp.2, 2013, https://doi.org/10.12989/cac.2016.17.2.227
  3. Shear strength of joints between reinforced concrete slabs and steel-plate-concrete walls vol.171, pp.10, 2013, https://doi.org/10.1680/jstbu.16.00138