DOI QR코드

DOI QR Code

Acoustic Radiation from the Modal Vibrations of a Thick, Finite Cylinder with Various Boundary Conditions

다양한 경계조건을 가진 유한 길이 후판 실린더의 고유진동에 의한 소음방사에 관한 연구

  • Lee, Hyeongill (School of Automotive Engineering, Kyungpook National University)
  • Received : 2013.01.30
  • Accepted : 2013.06.10
  • Published : 2013.07.20

Abstract

This study introduces a hybrid approach combining numerical results with pre-developed analytical calculations for the sound radiation from the modal vibration of a thick, finite length cylinder with various boundary conditions. Structural vibrations of the cylinder are numerically investigated with the finite element method, and distributions of vibratory displacements on the cylinder surface are idealized as simple mathematical expressions based on the numerical results. Sound radiations from the normal vibration of the cylinder are calculated based on idealized modal displacements using a previously introduced theoretical solution. The results are confirmed with numerical analyses using the boundary element method. Based on these results, it can be concluded that the solutions suggested in this study have good accuracies in calculating the vibro-acoustic properties of a thick, finite cylinder with various boundary conditions. Also, the sound radiation characteristics of many practical components such as brake drums and motor housings are expected to be investigated using the procedure proposed in this study.

수치해석과 이전 연구에서 소개된 이론적인 해법을 결합한 하이브리드 방법을 이용하여 양단에 다양한 경계조건을 가진 일정 길이의 후판 실린더의 소음방사 특성을 분석하는 방법을 제시한다. 실린더의 구조적인 진동은 유한요소법을 이용한 수치해석을 통하여 해석하였으며 결과로 얻어진 실린더 표면의 진동변위 분포를 간단한 식으로 이상화하였다. 실린더의 고유진동에 의해 발생되는 소음은 이전 연구에서 소개된 이론적인 해법을 앞에서 구한 이상화된 고유진동 특성에 적용하여 계산한다. 이 결과는 경계요소법을 이용한 해석을 통하여 검증하였다. 이 결과를 바탕으로, 이 연구에서 제시된 이론적인 해법들이 다양한 형태의 경계조건을 가진 유한한 길이의 실린더에서 방사되는 소음 계산에 충분한 정확도를 가지고 있음을 알 수 있다. 이 연구에서 제시된 방법을 적용하면 브레이크 드럼, 모터 하우징 등 여러 종류의 실제 부품들에서 방사되는 소음을 계산할 수 있을 것으로 기대된다.

Keywords

References

  1. Gladwell, G. M. and Vijay, D. K., 1975, Natural Frequencies of Free Finite Length Circular Cylinders, Journal of Sound and Vibration, Vol. 42, No. 3, pp. 387-397. https://doi.org/10.1016/0022-460X(75)90252-7
  2. Hutchinson, J. R. and El-Azhari, 1986, Vibrations of free hollow circular cylinders, Journal of Applied Mechanics, Vol. 53, No. 3, pp. 641-646. https://doi.org/10.1115/1.3171824
  3. Singal, K. and Williams, K., 1988, A Theoretical and Experimental Study of Vibrations of Thick Circular Cylindrical Shell and Rings, Journal of Vibration, Acoustics, Stress and Reliability in Design, Vol. 110, No. 4, pp. 533-537. https://doi.org/10.1115/1.3269562
  4. Liew, K. M., Hung, K. C. and Lim, M. K., 1995, Vibration of Stress Free Hollow Cylinders of Arbitrary Cross-section, Journal of Applied Mechanics, Vol. 62, No. 3, pp. 718-724. https://doi.org/10.1115/1.2897005
  5. Wang, H. and Williams, K., 1996, Vibrational Modes of Tthick Cylinders of Finite Length, Journal of Sound and Vibration, Vol. 191, No. 5, pp. 955-971. https://doi.org/10.1006/jsvi.1996.0165
  6. So, J. and Leissa, A.W., 1997, Free Vibration of Thick Hollow Circular Cylinders from Three- Dimensional Analysis, Journal of Vibration and Acoustics, Vol. 119, No. 1, pp. 89-95. https://doi.org/10.1115/1.2889692
  7. Zhou, D., Cheung, Y. K., Lo, S. H. and Au, F. T. K., 2003, 3D Vibration Analysis of Solid and Hollow Circular Cylinders via Chebyshev-Ritz Method, Computer Methods in Applied Mechanics and Engineering, Vol. 192, No. 13-14, pp. 1575-1589. https://doi.org/10.1016/S0045-7825(02)00643-6
  8. Mofakhami, M. R., Toudeshky, H. H. and Hashemi, S. H., 2006, Finite Cylinder Vibrations with Different End Boundary Conditions, Journal of Sound and Vibration, Vol. 297, No. 1-2, pp. 293-314. https://doi.org/10.1016/j.jsv.2006.03.041
  9. Sohn, J. W., Kwon, O. C. and Choi, S. B., 2009, Modal Characteristics and Vibration Control of Cylindrical Shell Structure : Experimental Results Comparison in the Air and Water, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 19, No. 9, pp. 899-906. https://doi.org/10.5050/KSNVN.2009.19.9.899
  10. Junger, M. C. and Feit, D., 1985, Sound, Structures, and Their Interactions, MIT Press, New York.
  11. Hong, J. S. and Lee, J. M., 1990, A Study on the Analysis of Acoustic Radiation of Axisymmetric Shells, Transactions of Korean Society for Mechanical Engineering, Vol. 14, No. 4, pp. 797-802.
  12. Lin, T. R., Mechefske, C. and O'Shea, P., 2011, Characteristics of Modal Sound Radiation of Finite Cylindrical Shells, Journal of Vibration and Acoustics, Vol. 133, No. 5, pp. 95-100.
  13. UGS Corp., 2006, I-DEAS User's Manual Version 11.
  14. Sandman, B. E., 1976, Fluid Loading Influence Coefficients for A Finite Cylindrical Shell, Journal of the Acoustical Society of America, Vol. 60, No. 6, pp. 1256-1264. https://doi.org/10.1121/1.381238
  15. Lee, H., 2005, Acoustic Radiation from Radial Vibration Modes of a Thick Annular Disc, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 15, No. 4, pp. 225-239. https://doi.org/10.5050/KSNVN.2005.15.2.225
  16. NIT, 2005, SYSNOISE User's Manual Revision 5.6.

Cited by

  1. Acoustic Radiation from a Submerged Stiffened Cylindrical Shell Excited by Resiliently Mounted Machinery vol.25, pp.1, 2015, https://doi.org/10.5050/KSNVE.2015.25.1.033
  2. Vibro-acoustic Characteristics of an Automotive Brake Drum vol.26, pp.7, 2016, https://doi.org/10.5050/KSNVE.2016.26.7.836