참고문헌
- W. Waag, C. Fleischer, C. Schaper, J. Berger, and D. U. Sauer, "Self-adapting on-board diagnostic algorithms for lithium-ion batteries," Advanced Battery Development for Automotive and Utility Applications and their Electric Power Grid Integration, Aachen/Germany, Mar. 2011.
- G. Ascheid and H. Meyr, "Systemtheorie I+II, 6th edition," Druck und Verlagshaus Mainz GmbH Aachen, Aachen/Germany, Mar. 2007.
- D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches, Wiley-Interscience, 2006.
- M. T. Hagan and M. Menhaj, "Training feedforward networks with marquardt algorithm," IEEE Trans. Neural Netw., Vol. 5, No. 6, pp.989-993, Nov. 1994. https://doi.org/10.1109/72.329697
- G. Plett, "Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1: Background," Journal of Power Sources, Vol. 134, No. 2, pp. 252-261, Aug. 2004. https://doi.org/10.1016/j.jpowsour.2004.02.031
- R. E. Kalman. "A new approach to linear filtering and prediction problems," Transactions of the ASME-Journal of Basic Engineering, Vol. 82, pp. 35-45, 1960. https://doi.org/10.1115/1.3662552
- D. Nauck, C. Borgelt, F. Klawonn, and R. Kruse, "Neuro-fuzzy-systeme: von den grundlagen künstlicher neuronaler netze zur kopplung mit fuzzy-systemen," Computational Intelligence, Vieweg, 2003.
- J.-S. R. Jang, "Neuro-fuzzy modeling: architectures, analyses and applications," Ph.D. Thesis, University of California, Berkeley, 1992.
- J.-S. R. Jang, C.-T. Sun, and E. Mizutani, "Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence," Prentice Hall, 2007.
- J.-S. R. Jang, "Input selection for ANFIS learning," In: Proc. Fifth IEEE Int Fuzzy Systems Conf., Vol. 2, pp. 1493-1499, 1996.
- J.-S. R. Jang and E. Mizutani, "Levenberg-marquardt method for ANFIS learning," In: Proc. NAFIPS Fuzzy Information Processing Society, Biennial Conference of the North American, pp. 87-91, Jun. 1996.
- D. U. Sauer, O. Bohlen, T. Sanders, W. Waag, R. Schmidt, and J. B. Gerschler, "Batteriezustanderkennung: mögliche verfahrens- und algorithmenansatze, grenzen der batteriezustandserkennung," Energiemanagement und Bordnetze II, Hrsg. Matthias Schollmann, Expert-Verlag, pp. 1-30, 2007.
- J.-S. R. Jang and S. Chuen-Tsai, "Neuro-fuzzy modeling and control," Proceedings of the IEEE, Vol. 83, No. 3, pp. 378-406, Mar. 1995. https://doi.org/10.1109/5.364486
- K. Xiong, H. Zhang, and L. Liu, "Adaptive robust extended Kalman filter for nonlinear stochastic systems," IET Control Theory Applications, Vol. 2, No. 3, pp. 239-250, Mar. 2008. https://doi.org/10.1049/iet-cta:20070096
- D. Abel and A. Bollig, "Rapid Control Prototyping: Methoden und Anwendungen," Springer Verlag Heidelberg, 2006.
- G. Welch and G. Bishop, "An introduction to the kalman filter," In: Department of Computer Science, University of North Carolina, Chapel Hill, 2006.
- O. Bohlen, J. B. Gerschler, D. U. Sauer, P. Birke, M. Keller, "Robust algorithms for a reliable battery diagnosis - managing batteries in hybrid electric vehicles," 22nd Electric Vehicle Symposium (EVS22), Yokohama, Japan, 2006.
- PNGV battery test manual, INEEL, DOE/ID-10597, Rev. 3, 2001.
- Advanced Technology Development Program For Lithium-Ion Batteries. Battery Technology Life Verification. Test Manual., INEEL/EXT-04-01986, 2005.
- Battery Test Manual For Plug-In Hybrid Electric Vehicles, U.S. Department of Energy, INL/EXT-07-12536, 2010.
- N. Nieto, M. Ecker, S. Käbitz, J. Münnix, and D. U. Sauer, "Detailed calendar and cycle life studies of NMC-based 18650 automotive lithium-ion batteries," 16th International Meeting on Lithium Batteries (IMLB), Korea, 2012.
- M. Broussely, Ph. Biensan, F. Bonhomme, Ph. Blanchard, S. Herreyre, K. Nechev, R. J. Staniewicz, "Main aging mechanisms in Li ion batteries," Journal of Power Sources, Vol. 146, No. 1-2, pp. 90-96, Aug. 2005. https://doi.org/10.1016/j.jpowsour.2005.03.172
- D. P. Abraham, J. L. Knuth, D. W. Dees, I. Bloom, and J. P. Christophersen, "Performance degradation of high-power lithium-ion cells electrochemistry of harvested electrodes," Journal of Power Sources, Vol. 170, No. 2, pp. 465-475, Jul. 2007. https://doi.org/10.1016/j.jpowsour.2007.03.071
- M. Safari and C. Delacourt, "Aging of a commercial Graphite/LiFePO4 cell," Journal of The Electrochemical Society, Vol. 158, No. 10, pp. 1123-1135, Aug. 2011. https://doi.org/10.1149/1.3614529
- R. G. Jungst, G. Nagasubramanian, H. L. Case, B. Y. Liaw, A. Urbina, T. L. Paez, and D. H. Doughty, "Accelerated calendar and pulse life analysis of lithium-ion cells," Journal of Power Sources, Vol. 119-121, pp. 870-873, Jun. 2003. https://doi.org/10.1016/S0378-7753(03)00193-9
- D. Y. Kim and D. Y. Jung, US 7518375, 2009.
- G. L. Plett, "High-performance battery-pack power estimation using a dynamic cell model," IEEE Trans. Veh. Technol., Vol. 53, No. 5, pp. 1586-1593, Sep. 2004. https://doi.org/10.1109/TVT.2004.832408
- G.L. Plett, WO 2005050810 A1, 2005.
- O. Bohlen and M. Roscher, "Method for determining and/or predicting the maximum power capacity of a battery," US 20120215517 A1, 2012.
- M. Roscher, "Verfahren zur Bestimmung und/oder Vorhersage der Hochstrombelastbarkeit einer Batterie," DE 102009049320 A1, 2011.
- R. Xiong, H. He, F. Sun, and K. Zhao, "Estimation of peak power capability of li-ion batteries in electric vehicles by a hardware-in-loop approach," Energies, Vol. 5, pp. 1455-1469, May 2012. https://doi.org/10.3390/en5051455
- F. Sun, R. Xiong, H. He, W. Li, and J. E. E. Aussems, "Model-based dynamic multi-parameter method for peak power estimation of lithiumion batteries," Applied Energy, Vol. 96, pp 378-386, Aug. 2012. https://doi.org/10.1016/j.apenergy.2012.02.061
- S. Wang, M. Verbrugge, J. S. Wang, and P. Liu, "Power prediction from a battery state estimator that incorporates diffusion resistance," Journal of Power Sources, Vol. 214, pp. 399-406, Sep. 2012. https://doi.org/10.1016/j.jpowsour.2012.04.070
- D. Yumoto and H. Nakamura, "Estimating apparatus and method of input and output enabling powers for secondary cell," US 7009402, 2006.
- D. Yumoto and H. Nakamura, "Available input-output power estimating device for secondary battery," US 7486079, 2009.
- R. Schmidt, O. Bohlen, and D. U. Sauer, "Passive Impedanzmessung zur Batteriediagnose in Kraftfahr- zeugen," Bunsenkolloquium, Dresden, Germany, 2007.
- C. Hu , B.D. Youn, J. Chung, "A multiscale framework with extended kalman filter for lithium-ion battery SOC and capacity estimation," Applied Energy, Vol. 92, pp. 694-704, Apr. 2012. https://doi.org/10.1016/j.apenergy.2011.08.002
- J. Lee, O. Nam, and B. H. Cho, "Li-ion battery SOC estimation method based on the reduced order extended Kalman filtering," Journal of Power Sources, Vol. 174, No. 1, pp. 9-15, Nov. 2007. https://doi.org/10.1016/j.jpowsour.2007.03.072
- G. L. Plett, "Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation," Journal of Power Sources, Vol. 134, No. 2, pp. 277-292, Aug. 2004. https://doi.org/10.1016/j.jpowsour.2004.02.033
- M. A. Roscher, "Zustandserkennung von LiFePO4- Batterien für Hybrid- und Elektrofahrzeuge," RWTH Aachen University, Ph.D. Thesis, 2010.
- M. A. Roscher, O. S. Bohlen, and D. U. Sauer, "Reliable state estimation of multicell lithium-ion battery systems," IEEE Trans. Energy Convers., Vol. 26, No. 3, pp. 737-743, Sep. 2011. https://doi.org/10.1109/TEC.2011.2155657
- M. Verbrugge, "Adaptive, multi-parameter battery state estimator with optimized time-weighting factors," Journal of Applied Electrochemistry, Vol. 37, pp. 605-616, Feb. 2007. https://doi.org/10.1007/s10800-007-9291-7
- S. Wang, M. Verbrugge, J. S. Wang, and P. Liu, "Multi-parameter battery state estimator based on the adaptive and direct solution of the governing differential equations," Journal of Power Sources, Vol. 196, No. 20, pp. 8735-8741, Oct. 2011. https://doi.org/10.1016/j.jpowsour.2011.06.078
피인용 문헌
- State Estimation Technique for VRLA Batteries for Automotive Applications vol.16, pp.1, 2016, https://doi.org/10.6113/JPE.2016.16.1.238
- Implementation and robustness of an analytically based battery state of power vol.287, 2015, https://doi.org/10.1016/j.jpowsour.2015.03.165
- Online dynamic equalization adjustment of high-power lithium-ion battery packs based on the state of balance estimation vol.166, 2016, https://doi.org/10.1016/j.apenergy.2016.01.013
- Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles vol.258, 2014, https://doi.org/10.1016/j.jpowsour.2014.02.064
- On-line self-learning time forward voltage prognosis for lithium-ion batteries using adaptive neuro-fuzzy inference system vol.243, 2013, https://doi.org/10.1016/j.jpowsour.2013.05.114
- Cell Balancing Method in Flyback Converter without Cell Selection Switch of Multi-Winding Transformer vol.11, pp.2, 2016, https://doi.org/10.5370/JEET.2016.11.2.367
- Multi-scale computation methods: Their applications in lithium-ion battery research and development vol.25, pp.1, 2016, https://doi.org/10.1088/1674-1056/25/1/018212
- Systems vol.162, pp.10, 2015, https://doi.org/10.1149/2.0481510jes
- SoC Estimation for Lithium-ion Batteries: Review and Future Challenges vol.6, pp.4, 2017, https://doi.org/10.3390/electronics6040102
- Power prediction method of lithium-ion battery for unmanned vehicles based on combined constraint intelligence algorithm pp.1573-7543, 2018, https://doi.org/10.1007/s10586-018-1900-1
- Lithium-ion Battery Instantaneous Available Power Prediction Using Surface Lithium Concentration of Solid Particles in a Simplified Electrochemical Model vol.33, pp.11, 2018, https://doi.org/10.1109/TPEL.2018.2791965