References
- Emad, S.; Chaudhuri, M. Journal of Hazardous Materials 2010, 173, 445. https://doi.org/10.1016/j.jhazmat.2009.08.104
- Giahi, M.; Habibi, S.; Toutounchi, S.; Khavei, M. Russian Journal of Physical Chemistry A 2012, 86, 689. https://doi.org/10.1134/S0036024412040103
- Ahuja, R.; Fast, L.; Eriksson, O.; Wills, J. M.; Johansson, B. J. Appl. Phys. 2005, 83, 1835.
- Giahi, M.; Taghavi, H.; Habibi, S. Russian Journal of Physical Chemistry A 2012, 86, 2003. https://doi.org/10.1134/S0036024412130080
- Wang, C.; Xu, B. Q.; Wang, X. M.; Zhao, J. C. J. Solid State Chem. 2005, 178, 3500. https://doi.org/10.1016/j.jssc.2005.09.005
- Zhang, Z. H.; Yuan, Y.; Fang, Y. J.; Liang, L. H.; Ding, H. C.; Jin, L. T. Talanta 2007, 73, 523. https://doi.org/10.1016/j.talanta.2007.04.011
- Wang, C.; Wang, X. M.; Xu, B. Q.; Zhao, J. C.; Mai, B. X.; Peng, P. A.; Sheng, G. Y.; Fu, H. M. J. Photochem. Photobiol. A 2004, 168, 47. https://doi.org/10.1016/j.jphotochem.2004.05.014
- Sakthivel, S.; Geissen, S. U.; Bahnemann, D. W.; Murugesan, V.; Vogelpohl, A. J. Photochem. Photobiol. A 2002, 148, 283. https://doi.org/10.1016/S1010-6030(02)00055-2
- Li, D.; Haneda, H. J. Photochem. Photobiol. A 2003, 160, 203. https://doi.org/10.1016/S1010-6030(03)00212-0
- Spanhel, L.; Weller, H.; Henglein, A. J. Am. Chem. Soc. 1987, 109, 6632. https://doi.org/10.1021/ja00256a012
- Rabani, J. J. Phys. Chem. 1989, 93, 7707. https://doi.org/10.1021/j100359a035
- Eswaramoorthi, I.; Sundaramurthy, V.; Dalai, A. K. Appl. Catal. A 2006, 313, 22. https://doi.org/10.1016/j.apcata.2006.06.052
- Yang, H. C.; Chang, F. W.; Roselin, L. S. J. Mol. Catal. A 2007, 276, 184. https://doi.org/10.1016/j.molcata.2007.07.002
- Yoon, D. H.; Yu, J. H.; Choi, G. M. Sens. Actuators B 1998, 46, 15. https://doi.org/10.1016/S0925-4005(97)00317-1
- Hu, Y.; Zhou, X. H.; Han, Q.; Cao, Q. X.; Huang, Y. X. Mater. Sci. Eng. B 2003, 99, 41. https://doi.org/10.1016/S0921-5107(02)00446-4
- Fierro, G.; Jacono, M. L.; Inversi, M.; Porta, P.; Cioci, F.; Lavecchia, R. Appl. Catal. A 1996, 137, 327. https://doi.org/10.1016/0926-860X(95)00311-8
- Behnajadi, M. A.; Modirshahla, N.; Hamzavi, R. J. Hazard. Mater. B 2006, 133, 226. https://doi.org/10.1016/j.jhazmat.2005.10.022
- Titus, M. P.; Molina, V. G.; Banos, M. A.; Gimenes, J.; Esplugas, S. Appl. Catal, B Environ. 2004, 47, 219. https://doi.org/10.1016/j.apcatb.2003.09.010
- Mijin, D.; Savic, M.; Snezana, P.; Smiljanic, A.; Glavaski, O.; Jovanovic, M.; Petrovic, S. Desalination 2009, 249, 2862.
- Daneshvar, N.; Salari, D.; Khataee, A. R. J. Photochem. Photobiol. A: Chem. 2004, 162, 317. https://doi.org/10.1016/S1010-6030(03)00378-2
- Wei, L.; Shifu, C.; Wei, Z.; Sujuan, Z. Journal of Hazardous Materials 2009, 164, 154. https://doi.org/10.1016/j.jhazmat.2008.07.140
- Devipriya, S.; Yesodharan, S. Sol. Energy Mater. Sol. Cells 2005, 86, 309. https://doi.org/10.1016/j.solmat.2004.07.013
- Kown, Y. T.; Song, K. Y.; Lee, W. I.; Choi, G. J.; Do, Y. R. J. Catal. 2000, 191, 192. https://doi.org/10.1006/jcat.1999.2776
- Mozia, S.; Tomaszewska, M.; Morawski, A. W. Desalination 2005, 185, 449. https://doi.org/10.1016/j.desal.2005.04.050
- Chen, C. C.; Lu, C. S.; Fan, H. J.; Lin, H. D. Desalination 2008, 219, 89. https://doi.org/10.1016/j.desal.2007.05.009
- Rajeshwa, K.; Osugi, M. E.; Chanmanee, W.; Chenthamarakshan, C. R.; Zanoni, P.; Kajitvichyanukul, M. V. W.; Krishnan-Ayer, R. J. Photochem. Photobiol. C: Photochem Rev. 2008, 9, 171. https://doi.org/10.1016/j.jphotochemrev.2008.09.001
- Roy, R. K. Design of Experiments Using The Taguchi approach: 16 Steps to Product and Process Improvement; John Wiley & Sons Inc.: Canada, step 1, 2001; p 10.
- Konstantinou, I. K.; Albanis, T. A. Appl Catal B: Environ. 2004, 49, 1. https://doi.org/10.1016/j.apcatb.2003.11.010
Cited by
- Nano Photo Catalytic Degradation of the Pharmaceutical Agent Balsalazide Under UV Slurry Photo Reactor vol.226, pp.8, 2015, https://doi.org/10.1007/s11270-015-2531-2
- Photocatalytic degradation of diclofenac sodium in aqueous solution using N, S, and C-doped ZnO vol.88, pp.12, 2015, https://doi.org/10.1134/S10704272150120228
- Synthesized of nanophotocatalyst ZnO and ZnO doped with SnO2 and their application photochemical degradation a surfactant in aqueous solutions vol.88, pp.6, 2015, https://doi.org/10.1134/S1070427215060142
- Synthesis of ZnO nanoparticles and its application in photocatalytic degradation of LABS by the trial-and-error and Taguchi methods vol.89, pp.5, 2016, https://doi.org/10.1134/S1070427216050220
- Photochemical degradation of an anionic surfactant by TiO2 nanoparticle doped with C, N in aqueous solution vol.90, pp.13, 2016, https://doi.org/10.1134/S0036024416130240
- Studies on bandgap tuning of visible light active heterojunction CuO/ZnO nanocomposites for DSSC application pp.1573-482X, 2018, https://doi.org/10.1007/s10854-018-0245-0
- AgI/AgCl/H2WO4 Double Heterojunctions Composites: Preparation and Visible-Light Photocatalytic Performance vol.35, pp.2, 2013, https://doi.org/10.5012/bkcs.2014.35.2.441
- Synthesis CuO-ZnO nanocomposite and its application as an antibacterial agent vol.172, pp.None, 2013, https://doi.org/10.1088/1757-899x/172/1/012036
- UV responsive quercetin derived and functionalized CuO/ZnO nanocomposite in ameliorating photocatalytic degradation of rhodamine B dye and enhanced biocidal activity against selected pathogenic strain vol.56, pp.8, 2013, https://doi.org/10.1080/10934529.2021.1930770
- ZnO hollow spheres arrayed molecularly-printed-polymer based selective electrochemical sensor for methyl-parathion pesticide detection vol.24, pp.None, 2013, https://doi.org/10.1016/j.eti.2021.101847