DOI QR코드

DOI QR Code

Synthesis of CuO/ZnO Nanoparticles and Their Application for Photocatalytic Degradation of Lidocaine HCl by the Trial-and-error and Taguchi Methods

  • Giahi, M. (Department of Chemistry, Lahijan Branch, Islamic Azad University) ;
  • Badalpoor, N. (Department of Chemistry, Shahreray Branch, Islamic Azad University) ;
  • Habibi, S. (Department of Chemistry, Shahreray Branch, Islamic Azad University) ;
  • Taghavi, H. (Department of Chemistry, Lahijan Branch, Islamic Azad University)
  • Received : 2013.01.11
  • Accepted : 2013.04.04
  • Published : 2013.07.20

Abstract

A novel sol-gel method was implied to prepare CuO-doped ZnO nanoparticles. XRD and SEM techniques were used to characterize the CuO-doped ZnO sample. The photocatalytic degradation of Lidocaine HCl was investigated by two methods. The degradation was studied under different conditions such as the amount of photocatalyst, pH of the system, initial concentration, presence of electron acceptor, and presence of anions. The results showed that they strongly affected the photocatalytic degradation of Lidocaine HCl. The photodegradation efficiency of drug increased with the increase of the irradiation time. After 6 h irradiation with 400-W mercury lamp, about 93% removal of Lidocaine HCl was achieved. The degree of photodegradation obtained by Taguchi method compatible with the trial-and-error method showed reliable results.

Keywords

References

  1. Emad, S.; Chaudhuri, M. Journal of Hazardous Materials 2010, 173, 445. https://doi.org/10.1016/j.jhazmat.2009.08.104
  2. Giahi, M.; Habibi, S.; Toutounchi, S.; Khavei, M. Russian Journal of Physical Chemistry A 2012, 86, 689. https://doi.org/10.1134/S0036024412040103
  3. Ahuja, R.; Fast, L.; Eriksson, O.; Wills, J. M.; Johansson, B. J. Appl. Phys. 2005, 83, 1835.
  4. Giahi, M.; Taghavi, H.; Habibi, S. Russian Journal of Physical Chemistry A 2012, 86, 2003. https://doi.org/10.1134/S0036024412130080
  5. Wang, C.; Xu, B. Q.; Wang, X. M.; Zhao, J. C. J. Solid State Chem. 2005, 178, 3500. https://doi.org/10.1016/j.jssc.2005.09.005
  6. Zhang, Z. H.; Yuan, Y.; Fang, Y. J.; Liang, L. H.; Ding, H. C.; Jin, L. T. Talanta 2007, 73, 523. https://doi.org/10.1016/j.talanta.2007.04.011
  7. Wang, C.; Wang, X. M.; Xu, B. Q.; Zhao, J. C.; Mai, B. X.; Peng, P. A.; Sheng, G. Y.; Fu, H. M. J. Photochem. Photobiol. A 2004, 168, 47. https://doi.org/10.1016/j.jphotochem.2004.05.014
  8. Sakthivel, S.; Geissen, S. U.; Bahnemann, D. W.; Murugesan, V.; Vogelpohl, A. J. Photochem. Photobiol. A 2002, 148, 283. https://doi.org/10.1016/S1010-6030(02)00055-2
  9. Li, D.; Haneda, H. J. Photochem. Photobiol. A 2003, 160, 203. https://doi.org/10.1016/S1010-6030(03)00212-0
  10. Spanhel, L.; Weller, H.; Henglein, A. J. Am. Chem. Soc. 1987, 109, 6632. https://doi.org/10.1021/ja00256a012
  11. Rabani, J. J. Phys. Chem. 1989, 93, 7707. https://doi.org/10.1021/j100359a035
  12. Eswaramoorthi, I.; Sundaramurthy, V.; Dalai, A. K. Appl. Catal. A 2006, 313, 22. https://doi.org/10.1016/j.apcata.2006.06.052
  13. Yang, H. C.; Chang, F. W.; Roselin, L. S. J. Mol. Catal. A 2007, 276, 184. https://doi.org/10.1016/j.molcata.2007.07.002
  14. Yoon, D. H.; Yu, J. H.; Choi, G. M. Sens. Actuators B 1998, 46, 15. https://doi.org/10.1016/S0925-4005(97)00317-1
  15. Hu, Y.; Zhou, X. H.; Han, Q.; Cao, Q. X.; Huang, Y. X. Mater. Sci. Eng. B 2003, 99, 41. https://doi.org/10.1016/S0921-5107(02)00446-4
  16. Fierro, G.; Jacono, M. L.; Inversi, M.; Porta, P.; Cioci, F.; Lavecchia, R. Appl. Catal. A 1996, 137, 327. https://doi.org/10.1016/0926-860X(95)00311-8
  17. Behnajadi, M. A.; Modirshahla, N.; Hamzavi, R. J. Hazard. Mater. B 2006, 133, 226. https://doi.org/10.1016/j.jhazmat.2005.10.022
  18. Titus, M. P.; Molina, V. G.; Banos, M. A.; Gimenes, J.; Esplugas, S. Appl. Catal, B Environ. 2004, 47, 219. https://doi.org/10.1016/j.apcatb.2003.09.010
  19. Mijin, D.; Savic, M.; Snezana, P.; Smiljanic, A.; Glavaski, O.; Jovanovic, M.; Petrovic, S. Desalination 2009, 249, 2862.
  20. Daneshvar, N.; Salari, D.; Khataee, A. R. J. Photochem. Photobiol. A: Chem. 2004, 162, 317. https://doi.org/10.1016/S1010-6030(03)00378-2
  21. Wei, L.; Shifu, C.; Wei, Z.; Sujuan, Z. Journal of Hazardous Materials 2009, 164, 154. https://doi.org/10.1016/j.jhazmat.2008.07.140
  22. Devipriya, S.; Yesodharan, S. Sol. Energy Mater. Sol. Cells 2005, 86, 309. https://doi.org/10.1016/j.solmat.2004.07.013
  23. Kown, Y. T.; Song, K. Y.; Lee, W. I.; Choi, G. J.; Do, Y. R. J. Catal. 2000, 191, 192. https://doi.org/10.1006/jcat.1999.2776
  24. Mozia, S.; Tomaszewska, M.; Morawski, A. W. Desalination 2005, 185, 449. https://doi.org/10.1016/j.desal.2005.04.050
  25. Chen, C. C.; Lu, C. S.; Fan, H. J.; Lin, H. D. Desalination 2008, 219, 89. https://doi.org/10.1016/j.desal.2007.05.009
  26. Rajeshwa, K.; Osugi, M. E.; Chanmanee, W.; Chenthamarakshan, C. R.; Zanoni, P.; Kajitvichyanukul, M. V. W.; Krishnan-Ayer, R. J. Photochem. Photobiol. C: Photochem Rev. 2008, 9, 171. https://doi.org/10.1016/j.jphotochemrev.2008.09.001
  27. Roy, R. K. Design of Experiments Using The Taguchi approach: 16 Steps to Product and Process Improvement; John Wiley & Sons Inc.: Canada, step 1, 2001; p 10.
  28. Konstantinou, I. K.; Albanis, T. A. Appl Catal B: Environ. 2004, 49, 1. https://doi.org/10.1016/j.apcatb.2003.11.010

Cited by

  1. Nano Photo Catalytic Degradation of the Pharmaceutical Agent Balsalazide Under UV Slurry Photo Reactor vol.226, pp.8, 2015, https://doi.org/10.1007/s11270-015-2531-2
  2. Photocatalytic degradation of diclofenac sodium in aqueous solution using N, S, and C-doped ZnO vol.88, pp.12, 2015, https://doi.org/10.1134/S10704272150120228
  3. Synthesized of nanophotocatalyst ZnO and ZnO doped with SnO2 and their application photochemical degradation a surfactant in aqueous solutions vol.88, pp.6, 2015, https://doi.org/10.1134/S1070427215060142
  4. Synthesis of ZnO nanoparticles and its application in photocatalytic degradation of LABS by the trial-and-error and Taguchi methods vol.89, pp.5, 2016, https://doi.org/10.1134/S1070427216050220
  5. Photochemical degradation of an anionic surfactant by TiO2 nanoparticle doped with C, N in aqueous solution vol.90, pp.13, 2016, https://doi.org/10.1134/S0036024416130240
  6. Studies on bandgap tuning of visible light active heterojunction CuO/ZnO nanocomposites for DSSC application pp.1573-482X, 2018, https://doi.org/10.1007/s10854-018-0245-0
  7. AgI/AgCl/H2WO4 Double Heterojunctions Composites: Preparation and Visible-Light Photocatalytic Performance vol.35, pp.2, 2013, https://doi.org/10.5012/bkcs.2014.35.2.441
  8. Synthesis CuO-ZnO nanocomposite and its application as an antibacterial agent vol.172, pp.None, 2013, https://doi.org/10.1088/1757-899x/172/1/012036
  9. UV responsive quercetin derived and functionalized CuO/ZnO nanocomposite in ameliorating photocatalytic degradation of rhodamine B dye and enhanced biocidal activity against selected pathogenic strain vol.56, pp.8, 2013, https://doi.org/10.1080/10934529.2021.1930770
  10. ZnO hollow spheres arrayed molecularly-printed-polymer based selective electrochemical sensor for methyl-parathion pesticide detection vol.24, pp.None, 2013, https://doi.org/10.1016/j.eti.2021.101847