DOI QR코드

DOI QR Code

The Effect of Low-Temperature Carbon Encapsulation on Si Nanoparticles for Lithium Rechargeable Batteries

  • Jung, Jaepyeong (Department of Energy and Materials Engineering, Dongguk University-Seoul) ;
  • Song, Kyeongse (Department of Energy and Materials Engineering, Dongguk University-Seoul) ;
  • Kang, Yong-Mook (Department of Energy and Materials Engineering, Dongguk University-Seoul)
  • Received : 2013.03.23
  • Accepted : 2013.04.26
  • Published : 2013.07.20

Abstract

The tailored surface modification of electrode materials is crucial to realize the wanted electronic and electrochemical properties. In this regard, a dexterous carbon encapsulation technique can be one of the most essential preparation methods for the electrode materials for lithium rechargeable batteries. For this purpose, DL-malic acid ($C_4H_6O_5$) was here used as the carbon source enabling an amorphous carbon layer to be formed on the surface of Si nanoparticles at enough low temperature to maintain their own physical or chemical properties. Various structural characterizations proved that the bulk structure of Si doesn't undergo any discernible change except for the evolution of C-C bond attributed to the formed carbon layer on the surface of Si. The improved electrochemical performance of the carbon-encapsulated Si compared to Si can be attributed to the enhanced electrical conductivity by the surface carbon layer as well as its role as a buffering agent to absorb the volume expansion of Si during lithiation and delithiation.

Keywords

References

  1. Tarascon, J. M.; Armand, M. Nature 2008, 451, 652. https://doi.org/10.1038/451652a
  2. Maier, J. Nature Mater. 2005, 4, 805. https://doi.org/10.1038/nmat1513
  3. Chen, J.; Xu, L.; Li, W.; Gou, X. Adv. Mater. 2005, 17, 582. https://doi.org/10.1002/adma.200401101
  4. Hossain, S.; Kim, Y. K.; Saleh, Y.; Loutfy, R. J. Power Sources 2006, 161, 640. https://doi.org/10.1016/j.jpowsour.2006.04.111
  5. Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novak, P. Adv. Mater. 1998, 10, 725. https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
  6. Johnson, B. A.; White, R. E. J. Power Sources 1998, 70, 48. https://doi.org/10.1016/S0378-7753(97)02659-1
  7. Obrovac, M. N.; Christensen, L. Electrochem. Solid-State Lett. 2004, 7, A93. https://doi.org/10.1149/1.1652421
  8. Niu, J. J.; Lee, J. Y. Electrochem. Solid-State Lett. 2002, 5, A107. https://doi.org/10.1149/1.1472256
  9. Ng, S. H.; Wang, J. Z.; Wexler, D.; Konstantinov, K.; Guo, Z. P.; Liu, H. K. Angew. Chem. Int. Ed. 2006, 45, 6896. https://doi.org/10.1002/anie.200601676
  10. Holzapfel, M.; Buqa, H.; Scheifele, W.; Novak, P.; Petrat, F. M. Chem. Commun. 2005, 12, 1566.
  11. Kang, Y. M.; Go, J. Y.; Lee, S. M.; Choi, W. U. Electrochem. Commun. 2007, 9, 1276. https://doi.org/10.1016/j.elecom.2007.01.019
  12. Kang, Y. M.; Lee, S. M.; Kim, S. J.; Jeong, G. J.; Sung, M. S.; Choi, W. U.; Kim, S. S. Electrochem. Commun. 2007, 9, 959. https://doi.org/10.1016/j.elecom.2006.11.036
  13. Zhang, W. M.; Hu, J. S.; Guo, Y. G.; Zheng, S. F.; Zhong, L. S.; Song, W. G.; Wan, L. J. Adv. Mater. 2008, 20, 1160. https://doi.org/10.1002/adma.200701364
  14. Lee, Y. M.; Kang, Y. M. J. Power Sources 2011, 196, 10686. https://doi.org/10.1016/j.jpowsour.2011.08.106
  15. Lee, Y. M.; Jo, M. R.; Song, K. S.; Nam, K. M.; Park, J. T.; Kang, Y. M. ACS Appl. Mater. Interfaces 2012, 4, 3459. https://doi.org/10.1021/am3005237
  16. Ji, L.; Zhang, Y. Energy Environ. Sci. 2011, 4, 3611. https://doi.org/10.1039/c1ee01592c
  17. Chan, C. K.; Zhang, X. F.; Cui, Y. Nano Lett. 2008, 8, 307. https://doi.org/10.1021/nl0727157
  18. Weydanz, W. J.; Wohlfahrt, M.; Huggins, R. A. J. Power Sources 1999, 81, 237.
  19. Wolfenstine, J. J. Power Sources 1999, 79, 111. https://doi.org/10.1016/S0378-7753(99)00052-X
  20. Peng, K.; Jie, J.; Zhang, W.; Lee, T. S. Appl. Phys. Lett. 2008, 93, 033105. https://doi.org/10.1063/1.2929373
  21. Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Nano Lett. 2009, 9, 3844. https://doi.org/10.1021/nl902058c
  22. Hatchard, T. D.; Dahn, J. R. J. Electrochem. Soc. 2004, 151, A838. https://doi.org/10.1149/1.1739217
  23. Obrovac, M. N.; Krause, L. J. J. Electrochem. Soc. 2007, 154, A103. https://doi.org/10.1149/1.2402112
  24. Park, M. S.; Rajendran, S.; Kang, Y. M.; Han, K. S.; Han, Y. S.; Lee, J. Y. J. Power Sources 2006, 158, 650. https://doi.org/10.1016/j.jpowsour.2005.08.052
  25. Park, M. S.; Kang, Y. M.; Rajendran, S.; Kwon, H. S.; Lee, J. Y. Mater. Chem. Phys. 2006, 496, 100.
  26. Wang, C. S.; Wu, G. T.; Zhang, X. B.; Qi, Z. F; Li, W. Z. J. Electrochem. Soc. 1998, 145, 2751. https://doi.org/10.1149/1.1838709
  27. Wilson, A. M.; Dahn, J. R. J. Electrochem. Soc. 1995, 142, 326. https://doi.org/10.1149/1.2043994
  28. Hu, Y. S.; Demir-Cakan, R.; Titirici, M. M.; Muller, J. O.; Schlogl, R.; Antonietti, M.; Maier, J. Angew. Chem. Angew. Chem. Int. Ed. 2008, 120, 1669. https://doi.org/10.1002/ange.200704287
  29. Park, M. S.; Wang, G. X.; Kang, Y. M.; Wexler, D.; Dou, S. X.; Liu, H. K. Chem. Angew. Chem. Int. Ed. 2007, 46, 750. https://doi.org/10.1002/anie.200603309
  30. Meiera, C.; Luttjohanna, S.; Kravetsa, V. G.; Nienhausa, H.; Lorkea, A.; Wiggersb, Hartmut. Physica E 2006, 32, 155. https://doi.org/10.1016/j.physe.2005.12.030
  31. Pasteris, J. D.; Wopenka, B. Astrobiology 2003, 3, 727. https://doi.org/10.1089/153110703322736051
  32. Yang, C. J.; Jiang, J. L.; Ping, D. J.; Fei, Z. H. Chin. Phys. Lett. 2008, 25, 780. https://doi.org/10.1088/0256-307X/25/2/116
  33. Kang, K.; Lee, H.; Han, D.; Kim, G.; Lee, D.; Lee, G.; Kang, Y. M.; Jo, M. Appl. Phys. Lett. 2010, 96, 053110. https://doi.org/10.1063/1.3299006
  34. Park, M. S.; Kang, Y. M.; Kim, J. H.; Wang, G. X.; Dou, S. X.; Liu, H. K. Carbon 2008, 46, 35. https://doi.org/10.1016/j.carbon.2007.10.032
  35. Hassan, M. F.; Guo, Z. P.; Chen, Z.; Liu, H. K. J. Power Sources 2010, 195, 2372. https://doi.org/10.1016/j.jpowsour.2009.10.065