DOI QR코드

DOI QR Code

Fabrication of CNT/CMK3 Carbon Composites with High Electrical/Thermal Conductive Properties

  • Choi, Seung Dae (Department of Chemical Engineering, Inha University) ;
  • Lee, Ju Hyun (Department of Chemical Engineering, Inha University) ;
  • Park, Da Min (Department of Chemical Engineering, Inha University) ;
  • Kim, Geon-Joong (Department of Chemical Engineering, Inha University)
  • Received : 2013.02.26
  • Accepted : 2013.04.26
  • Published : 2013.07.20

Abstract

Composite materials of mesoporous carbon and carbon nanotubes were synthesized using Ni, Co and Pd-loaded CMK3 via a catalytic reaction of methane and $CO_2$. The CNTs grew from the pores of the mesoporous carbon supports, and they were attached tightly to the CMK3 surface in a densely tangled shape. The CNT/CMK3 composite showed both non-graphitic mesoporous structures, and graphitic characteristics originating from the MWCNTS grown in the pores of CMK3. The electrochemical properties of the materials were characterized by their electrorheological effects and cyclic voltammetry. The CNTs/CMK3 composites showed high electrical conductivity and current density. The CNT/CMK3 or KOH-modified CNT/CMK3 particles were incorporated in a PMMA matrix to improve the thermal and electrical conductivity. Even higher thermal conductivity was achieved by the addition of KOH-modified CNT/CMK3 particles.

Keywords

References

  1. Li, H.; Wang, R.; Cao, R. Microporous and Mesoporous Materials 2008, 111, 32. https://doi.org/10.1016/j.micromeso.2007.07.002
  2. Lei, Y.; Fournier, C.; Pascal, J.-L.; Favier, F. Microporous and Mesoporous Materials 2008, 110, 167. https://doi.org/10.1016/j.micromeso.2007.10.048
  3. Ko, J. M.; Kim, K. M. Materials Chemistry and Physics 2009, 114, 837. https://doi.org/10.1016/j.matchemphys.2008.10.047
  4. Raymundo-Pinero, E.; Khomenko, V.; Frackowiakm, E.; Beguin, F. J. Electrochem. Soc. 2005, 152, A229. https://doi.org/10.1149/1.1834913
  5. Wang, G.-X.; Zhang, B.-L.; Yu, Z.-L.; Qu, M.-Z. Solid State Ionics 2005, 176, 1169. https://doi.org/10.1016/j.ssi.2005.02.005
  6. Fan, Z.; Chen, J.; Wang, M.; Cui, K.; Zhou, H.; Kuang, Y. Diamond Relat. Mater. 2006, 15, 1478. https://doi.org/10.1016/j.diamond.2005.11.009
  7. Subramanian, V.; Zhu, H.; Wei, B. Electrochem. Commun. 2006, 8, 827. https://doi.org/10.1016/j.elecom.2006.02.027
  8. Fuertes, A. B.; Lota, C.; Centeno, T. A.; Frackowiak, E. Electrochim. Acta 2005, 50, 2799. https://doi.org/10.1016/j.electacta.2004.11.027
  9. Han, S.; Hyeon, T. Chem. Commun. 1999, 19, 1955.
  10. Han, S.; Lee, K.; Oh, S.; Hyeon, T. Carbon 2003, 41, 1049. https://doi.org/10.1016/S0008-6223(02)00439-6
  11. Yu, J.; Yoon, S. B.; Chai, G. S. Carbon 2001, 39, 1442. https://doi.org/10.1016/S0008-6223(01)00095-1
  12. Toupin, M.; Blanger, D.; Hill, I. R.; Quinn, D. J. Power Sources 2005, 140, 203. https://doi.org/10.1016/j.jpowsour.2004.08.014
  13. Barisci, J. N.; Wallace, G. G.; Baughman, R. H. J. Electrochem. Soc. 2000, 147, 4580. https://doi.org/10.1149/1.1394104
  14. An, K. H.; Kim, W. S.; Park, Y. S.; Choi, Lee, S. M.; Chung, D. C.; Bae, D. J.; Lim, S. C.; Lee, Y. H. Adv. Mater. 2001, 13, 497. https://doi.org/10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO;2-H
  15. Ma, R. Z.; Liang, J.; Wei, B. Q.; Zhang, B.; Xu, C. L.; Wu, D. H. J. Power Sources 1999, 84, 126. https://doi.org/10.1016/S0378-7753(99)00252-9
  16. Diederich, L.; Barborini, E.; Piseri, P.; Podesta, A.; Milani, P.; Schneuwly, A.; Gallay, R. Appl. Phys. Lett. 1999, 75, 2662. https://doi.org/10.1063/1.125111
  17. An, K. H.; Kim, W. S.; Park, Y. S.; Moon, J.-M.; Bae, D. J.; Lim, S. C.; Lee, Y. S.; Lee, Y. H. Adv. Functional Mater. 2001, 11, 387. https://doi.org/10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G
  18. Peigney, A.; Laurent, Ch.; Flahaut, E.; Rousset, A. Carbon 2001, 39, 507. https://doi.org/10.1016/S0008-6223(00)00155-X
  19. An, K. H.; Jeon, K.; Heo, J.; Lim, S.; Bae, D.; Lee, Y. J. of Electrochem. Soc. 2002, 149, A1058. https://doi.org/10.1149/1.1491235
  20. Jurewicz, K.; Delpeux, S.; Bertagna, V.; Beguin, F.; Frackowiak, E. Chem. Phys. Lett. 2001, 347, 36. https://doi.org/10.1016/S0009-2614(01)01037-5
  21. Park, J.; Ko, J.; Park, O. J. of Electrochem. Soc. 2003, 150, A864. https://doi.org/10.1149/1.1576222
  22. Dong, X.; Shen, W.; Gu, J.; Xiong, L.; Zhu, Y.; Li, H.; Shi, J. J. Phys. Chem. B 2006, 110, 6015. https://doi.org/10.1021/jp056754n
  23. Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 2000, 122, 10712. https://doi.org/10.1021/ja002261e
  24. Fuertes, A. B.; Alvarez, S. Carbon 2004, 42, 3049. https://doi.org/10.1016/j.carbon.2004.06.020
  25. Obraztsov, A. N.; Obraztsova, E. A.; Tyurnina, A. V.; Zolotukhin, A. A. Carbon 2007, 45, 2017. https://doi.org/10.1016/j.carbon.2007.05.028
  26. Guo, X.-F.; Kim, J.-H.; Kim, G-J. Catal. Tod. 2011, 164, 336. https://doi.org/10.1016/j.cattod.2010.10.004
  27. Hong, J.; Lee, J.; Jung, D.; Shim, S. E. Thermochimica Acta 2011, 512, 34.

Cited by

  1. Highly ordered mesoporous carbon/iron porphyrin nanoreactor for the electrochemical reduction of CO2 vol.8, pp.30, 2013, https://doi.org/10.1039/d0ta04641h