DOI QR코드

DOI QR Code

Synthesis and Characterization of New Polyaza Non-macrocyclic and Macrocyclic Nickel(II) Complexes Containing One 1,3-Diazacyclohexane Ring

  • Received : 2013.03.23
  • Accepted : 2013.04.24
  • Published : 2013.07.20

Abstract

A new nickel(II) complex $[NiL^1]^{2+}$ ($L^1$ = 1-(2-aminoethyl)-3-(N-{2-aminoethyl}aminomethyl-1,3-diazacyclohexane) containing one 1,3-diazacyclohexane ring has been prepared selectively by the metal-template condensation of formaldehyde with N-(2-aminoethyl)-1,3-propanediamine and ethylenediamine at room temperature. The complex reacts with nitroethane and formaldehyde to yield the pentaaza macrocyclic complex $[NiL^2]^{2+}$ ($L^2$ = 8-methyl-8-nitro-1,3,6,10,13-pentaazabicyclo[13.3.1]heptadecane) bearing one C-$NO_2$ pendant arm. The reduction of $[NiL^2]^{2+}$ by using Zn/HCl produces $[NiL^3(H_2O)]^{2+}$ ($L^3$ = 8-amino-8-methyl-1,3,6,10,13-pentaazabicyclo[13.3.1]heptadecane) bearing one coordinated C-$NH_2$ pendant arm that is readily protonated in acid solutions. The hexaaza macrocyclic complex $[NiL^4]^{2+}$ ($L^4$ = 8-phenylmethyl-8-nitro-1,3,6,8,10,13-hexaazabicyclo[13.3.1]heptadecane) bearing one N-$CH_2C_6H_5$ pendant arm has also been prepared by the reaction of $[NiL^1]^{2+}$ with benzylamine and formaldehyde. The nickel(II) complexes of $L^1$, $L^2$, and $L^4$ have square-planar coordination geometry in the solid states and in nitromethane. However, they exist as equilibrium mixtures of the square-planar $[NiL]^{2+}$ (L = $L^1$, $L^2$, or $L^4$) and octahedral $[NiL(S)_2]^{2+}$ species in various coordinating solvents (S); the proportion of the octahedral species $[NiL(S)_2]^{2+}$ is strongly influenced by the ligand structure and the nature of the solvent. Synthesis, spectra, and chemical properties of the nickel(II) complexes of $L^1-L^4$ are described.

Keywords

References

  1. Fabbrizzi, L.; Licchelli, M.; Mosca, L.; Poggi, A. Coord. Chem. Rev. 2010, 254, 1628. https://doi.org/10.1016/j.ccr.2009.12.002
  2. Gavrish, S. P.; Lampeka, Y. D.; Lightfoot, P.; Pritzkow, H. Dalton Trans. 2007, 4708.
  3. Comba, P.; Hilfenhaus, P. J. Chem. Soc., Dalton trans. 1995, 3269.
  4. Jee, J.-E.; Kim, Y.-M.; Lee, S. S.; Park, K.-M.; Kwak, C.-H. Inorg. Chem Commun. 2003, 6, 946. https://doi.org/10.1016/S1387-7003(03)00157-6
  5. He, Y.; Kow, H.-Z.; Li, Y.; Zhou, B. C.; Xiong, M.; Li, Y. Inorg. Chem. Commun. 2003, 6, 38. https://doi.org/10.1016/S1387-7003(02)00671-8
  6. Harrowfield, J. M.; Kim, Y.; Koutsantonis, G. A.; Lee, Y. H.; Thuery, P. Inorg. Chem. 2004, 43, 1689. https://doi.org/10.1021/ic034912o
  7. Harrowfield, J.; Kim, J. Y.; Kim, Y.; Lee, Y. H.; Sujandi; Thuery, P. Polyhedron. 2005, 24, 968. https://doi.org/10.1016/j.poly.2005.03.014
  8. Han, S.; Kim, T.; Lough, A. J.; Kim, J. C. Inorg. Chim. Acta 2011, 370, 170. https://doi.org/10.1016/j.ica.2011.01.051
  9. Kang, S.-G.; Lee, Y. T.; Min, K. S.; Kim, J. Bull. Korean Chem. Soc. 2012, 33, 4231. https://doi.org/10.5012/bkcs.2012.33.12.4231
  10. Kang, S.-G.; Song, J.; Jeong, J. H. Inorg. Chim. Acta 2004, 357, 605. https://doi.org/10.1016/j.ica.2003.06.006
  11. Lee, Y.-T.; Kang, S.-G. Bull. Korean Chem. Soc. 2012, 33, 2517. https://doi.org/10.5012/bkcs.2012.33.8.2517
  12. Kim, H.; Kang, S.-G.;Jeong, S.-K. Bull. Korean Chem. Soc. 2012, 33, 1329. https://doi.org/10.5012/bkcs.2012.33.4.1329
  13. Kang, S.-G.; Ryu, K.; Suh, M. P.; Jeong, J. H. Inorg. Chem. 1997, 36, 2478. https://doi.org/10.1021/ic961419m
  14. Kang, S.-G.; Ryu, K.; Jung, S.-K.; Kim, C.-S. Bull. Korean Chem. Soc. 1996, 17, 331.
  15. Suh, M. P.; Shin, W.; Kim, H.; Koo, C. H. Inorg. Chem. 1987, 26, 1846. https://doi.org/10.1021/ic00259a008
  16. Suh, M. P.; Kang, S.-G. Inorg. Chem. 1988, 27, 2544. https://doi.org/10.1021/ic00287a034
  17. Suh, M. P.; Shin, W.; Kang, S.-G.; Lah, M. S.; Chung, T.-M. Inorg. Chem. 1989, 28, 1602. https://doi.org/10.1021/ic00307a036
  18. Kang, S.-G.; Jung, S.-K.; Kweon, J. K.; Kim, M.-S. Polyhedron 1993, 12, 353. https://doi.org/10.1016/S0277-5387(00)81737-4
  19. Curtis, N. F.; Gainsford, G. J.; Siriwwardena, A.; Weatherburn, D. C. Aus. J. Chem. 1993, 46, 755. https://doi.org/10.1071/CH9930755
  20. Kang, S.-G.; Choi, J.-S. Bull. Korean Chem. Soc. 1994, 15, 374.
  21. Curtis, N. F.; Powell, H. K. J.; Puschmann, H.; Rickard, C. E. F.; Waters, J. M. Inorg. Chim. Acta 2003, 355, 25. https://doi.org/10.1016/S0020-1693(03)00237-8
  22. Barefield, E. K.; Freeman, G. M.; Derveer, D. G. V. Inorg. Chem. 1986, 25, 552. https://doi.org/10.1021/ic00224a033
  23. Kang, S.-G.; Kweon, J. K.; Jeong, G. R.; Lee, U. Bull. Korean Chem. Soc. 2008, 29, 1905. https://doi.org/10.5012/bkcs.2008.29.10.1905
  24. Iwamoto, E.; Yokoyama, T.; Yamasaka, S.; Yabe, T.; Kumamaru, T.; Yamamoto, Y. J. Chem. Soc., Dalton Trans. 1988, 1935.
  25. Iwamoto, E.; Yokoyama, T.; Yamasaka, S.; Kumamaru, T.; Yamamoto, Y. J. Chem. Soc., Dalton Trans. 1984, 1323.
  26. Yokoyama, T.; Iwamoto, E.; Kumamaru, T. Bull. Chem. Soc. Jpn. 1991, 64, 464. https://doi.org/10.1246/bcsj.64.464
  27. Boiocchi, M.; Fabbrizzi, L.; Foti, F.; Vazquez, M. Dalton Trans. 2004, 2616.
  28. Kang, S.-G.; Kim, N.; Jeong, J. H. Inorg. Chim Acta 2011, 366, 247. https://doi.org/10.1016/j.ica.2010.11.003
  29. Bang, S.; Kim, N.; Kang, S.-G.; Jeong, J. H. Inorg. Chim. Acta 2012, 392, 184. https://doi.org/10.1016/j.ica.2012.05.035