DOI QR코드

DOI QR Code

Sequence Dependent Binding Modes of the ΔΔ- and ΛΛ-binuclear Ru(II) Complexes to poly[d(G-C)2] and poly[d(A-T)2]

  • Received : 2013.03.12
  • Accepted : 2013.04.24
  • Published : 2013.07.20

Abstract

The binding properties and sequence selectivities of ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ (bip = 4,4'-biphenylene (imidazo [4,4-f][1,10]phenanthroline) complexes with $poly[d(A-T)_2]$ and $poly[d(G-C)_2]$ were investigated using conventional spectroscopic methods. When bound to $poly[d(A-T)_2]$, a large positive circular dichroism (CD) spectrum was induced in absorption region of the bridging moiety for both the ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complexes, which suggested that the bridging moiety sits in the minor groove of the polynucleotide. As luminescence intensity increased, decay times became longer and complexes were well-protected from the negatively charged iodide quencher compared to that in the absence of $poly[d(A-T)_2]$. These luminescence measurements indicated that Ru(II) enantiomers were in a less polar environment compared to that in water and supported by minor groove binding. An angle of $45^{\circ}$ between the molecular plane of the bridging moiety of the ${\Delta}{\Delta}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complex and the local DNA helix axis calculated from reduced linear dichroism ($LD^r$) spectrum further supported the minor groove binding mode. In the case of ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complex, this angle was $55^{\circ}$, suggesting a tilt of DNA stem near the binding site and bridging moiety sit in the minor groove of the $poly[d(A-T)_2]$. In contrast, neither ${\Delta}{\Delta}$-nor ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complex produced significant CD or $LD^r$ signal in the absorption region of the bridging moiety. Luminescence measurements revealed that both the ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complexes were partially accessible to the $I^-$ quencher. Furthermore, decay times became shorter when bis-Ru(II) complexes bound to $poly[d(G-C)_2]$. These observations suggest that both the ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complexes bind at the surface of $poly[d(G-C)_2]$, probably electrostatically to phosphate group. The results indicate that ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ are able to discriminate between AT and GC base pairs.

Keywords

References

  1. Saha, I.; Hossain, M.; Kumar, G. S. J. Phys. Chem. B 2010, 114, 15278-15287. https://doi.org/10.1021/jp1064598
  2. Maiti, M.; Kumar, G. S. Med. Res. Rev. 2007, 27, 649-695. https://doi.org/10.1002/med.20087
  3. Duff, M. R.; Mudhivarthi, V. K.; Kumar, C. V. J. Phys. Chem. B 2009, 113, 1710-1721. https://doi.org/10.1021/jp807164f
  4. Hurley, L. H. Nature Rev. Cancer. 2002, 2, 188-200. https://doi.org/10.1038/nrc749
  5. Erkkila, K. E.; Odom, D. T.; Barton, J. K. Chem Rev. 1999, 99, 2777-2795. https://doi.org/10.1021/cr9804341
  6. Thuong, N. T.; Héléne, C. Angew. Chem. Int. Ed. 1993, 32, 666-690. https://doi.org/10.1002/anie.199306661
  7. Urathamakul, T.; Beck, J. L.; Sheil, M. M.; Aldrich-Wright, J. R.; Ralph, S. F. Dalton Trans. 2004, 2683-2690.
  8. Liu, F.; Meadows, K. A.; McMillin, D. R. J. Am. Chem. Soc. 1993, 115, 6699-6704. https://doi.org/10.1021/ja00068a029
  9. Krotz, A. H.; Kuo, L. Y.; Shields, T. P.; Barton, J. K. J. Am. Chem. Soc. 1993, 115, 3877-3882. https://doi.org/10.1021/ja00063a004
  10. Hudson, B. P.; Dupureur, C. M.; Barton, J. K. J. Am. Chem. Soc. 1995, 117, 9379-9380. https://doi.org/10.1021/ja00141a041
  11. Terbrueggen, R. H.; Barton, J. K. Biochemistry 1995, 34, 8227- 8234. https://doi.org/10.1021/bi00026a003
  12. Sitlani, A.; Dupureur, C. M.; Barton, J. K. J. Am. Chem. Soc. 1993, 115, 12589-12590. https://doi.org/10.1021/ja00079a050
  13. Xu, Q.; Jampani, S. R. B.; Deng, H.; Braunlin, W. H. Biochemistry 1995, 34, 14059-14065. https://doi.org/10.1021/bi00043a011
  14. Robinson, H.; Wang, A. H.-J. Nucleic Acids Res. 1996, 24, 676-682. https://doi.org/10.1093/nar/24.4.676
  15. Watt, T. A.; Collins, J. G.; Arnold, A. P. Inorg. Chem. 1994, 33, 609-610. https://doi.org/10.1021/ic00081a032
  16. Norden, B.; Lincoln, P.; Akerman, B.; Tuite, E. Met. Ions Biol. Syst. 1996, 33, 177-252.
  17. Erkkila, K. E.; Odom, D. T.; Barton, J. K. Chem. Rev. 1999, 99, 2777-2795. https://doi.org/10.1021/cr9804341
  18. Franklin, S. J.; Barton, J. K. Biochemistry 1998, 37, 16093-16105. https://doi.org/10.1021/bi981798q
  19. Lown, J. W. J. Mol. Recognit. 1994, 7, 79-88. https://doi.org/10.1002/jmr.300070205
  20. Dervan, P. B. Bioorg. Med. Chem. 2001, 9, 2215-2235. https://doi.org/10.1016/S0968-0896(01)00262-0
  21. Neidle, S. Nat. Prod. Rep. 2001, 18, 291-309. https://doi.org/10.1039/a705982e
  22. Gallmeier, H. C.; Konig, B. Eur. J. Org. Chem. 2003, 3473-3483. https://doi.org/10.1002/ejoc.200300096
  23. Murty, M. S. R. C.; Sugiyama, H. Biol. Pharm. Bull. 2004, 27, 468-474. https://doi.org/10.1248/bpb.27.468
  24. Carson, D. L.; Huchital, D. H.; Mantilla, E. J.; Sheardy, R. D.; Murphy, W. R. J. Am. Chem. Soc. 1993, 115, 6424-6425. https://doi.org/10.1021/ja00067a073
  25. Kielkopf, C. L.; Erkkila, K. E.; Brian, Hudson, P.; Barton, J. K.; Rees, D. C. Nature Struct. Biol. 2000, 7, 117-121. https://doi.org/10.1038/72385
  26. Rajput, C.; Rutkaite, R.; Swanson, L.; Haq, I.; Thomas, J. A. C. Chem. Eur. J. 2006, 12, 4611-4619. https://doi.org/10.1002/chem.200501349
  27. Gonzalez, V.; Wilson, T.; Kurihara, I.; Imai, A.; Thomas, J. A.; Otsuki, J. Chem. Commun. 2008, 1868-1870.
  28. Haq, I.; Lincoln, P.; Suh, D.; Nordén, B.; Chowdrey, B. J.; Chaires, J. B. J. Am. Chem. Soc. 1994, 117, 4788-4796.
  29. Hiort, C.; Lincoln, P.; Norden, B. J. Am. Chem. Soc. 1993, 115, 3448-3454. https://doi.org/10.1021/ja00062a007
  30. Yam, V. W. W.; Lo, K. K. W.; Cheung, K. K.; Kong, R. Y. C. J. Chem. Soc. Dalton Trans. 1997, 2067-2072.
  31. Homlin, R. E.; Stemp, E. D. A.; Barton, J. K. Inorg. Chem. 1998, 37, 29-34. https://doi.org/10.1021/ic970869r
  32. Zou, X. H.; Ye, B. H.; Li, H.; Lin, J. G.; Xiong, Y.; Ji, L. N. J. Chem. Soc. Dalton Trans. 1999, 1423-1428.
  33. Foley, F. M.; Keene, F. R.; Collins, J. G. J. Chem. Soc. Dalton Trans. 2001, 2968-2974.
  34. Jiang, C. W.; Chao, H.; Hong, X. L.; Li, H.; Mei, W. J.; Ji, L. N. Inorg. Chem. Commun. 2003, 6, 773-775. https://doi.org/10.1016/S1387-7003(03)00109-6
  35. Jiang, C. W. Eur. J. Inorg. Chem. 2004, 2277-2282.
  36. Morgan, J. L.; Buck, D. P.; Turley, A. G.; Collins, J. G.; Keene, F. R. Inorg. Chim. Acta 2006, 359, 888-898. https://doi.org/10.1016/j.ica.2005.06.036
  37. Morgan, J. L.; Buck, D. P.; Turley, A. G.; Collins, J. G.; Keene, F. R. J. Biol. Inorg. Chem. 2006, 11, 824-834. https://doi.org/10.1007/s00775-006-0130-9
  38. Lutterman, D. A.; Chouai, A.; Liu, Y.; Sun, Y.; Stewart, C. D.; Dunbar, K. R.; Turro, C. J. Am. Chem. Soc. 2008, 130, 1163-1170. https://doi.org/10.1021/ja071001v
  39. Ghosh, A.; Das, P.; Gill, M. R.; Kar, P.; Walker, M. G.; Thomas, J. A.; Das, A. Chem. Eur. J. 2011, 17, 2089-2098. https://doi.org/10.1002/chem.201002149
  40. Ma, D.-L.; Che, C.-M.; Siu, F.-M.; Yang, M.; Wong, K.-Y. Inorg. Chem. 2007, 46, 740-749. https://doi.org/10.1021/ic061518s
  41. Onfelt, B.; Lincoln, P.; Norden, B. J. Am. Chem. Soc. 2001, 123, 3630-3637. https://doi.org/10.1021/ja003624d
  42. Metcalfe, C.; Haq, I.; Thomas, J. A. Inorg. Chem. 2004, 43, 317-323. https://doi.org/10.1021/ic034749x
  43. Pierard, F.; Kirsh-De Mesmaeker, A. Inorg. Chem. Commun. 2006, 9, 111-126. https://doi.org/10.1016/j.inoche.2005.10.016
  44. Wilhelmsson, L. M.; Westerlund, F.; Lincoln, P.; Norden, B. J. Am. Chem. Soc. 2002, 124, 12092-12093. https://doi.org/10.1021/ja027252f
  45. Nordell, P.; Westerlund, F.; Wilhelmsson, L. M.; Norden, B.; Lincoln, P. Angew. Chem. Int. Ed. 2007, 46, 2203-2206. https://doi.org/10.1002/anie.200604294
  46. Jang, Y. J.; Kwon, B.-H.; Choi, B.-H.; Bae, C. H.; Seo, M. S.; Nam, W.; Kim, S. K. J. Inorg. Biochem. 2008, 102, 1885-1891. https://doi.org/10.1016/j.jinorgbio.2008.06.012
  47. Kwon, B. H.; Choi, B.-H.; Lee, H. M.; Jang, Y. J.; Lee, J.-C.; Kim, S. K. Bull. Korean Chem. Soc. 2010, 31, 1615-1620. https://doi.org/10.5012/bkcs.2010.31.6.1615
  48. Chitrapriya, N.; Jang, Y. J.; Kim, S. K.; Lee, H. J. Inorg. Biochem. 2011, 105, 1569-1575. https://doi.org/10.1016/j.jinorgbio.2011.08.016
  49. Norden, B.; Kubista, M.; Kurucsev, T. Q. Rev. Biophys. Chem. 1992, 25, 51-170. https://doi.org/10.1017/S0033583500004728
  50. Nordén B.; Kurucsev, T. J. Mol. Recognit. 1994, 7, 141-156. https://doi.org/10.1002/jmr.300070211
  51. Eriksson, S.; Kim, S. K.; Kubista, M.; Norden, B. Biochemistry 1993, 32, 2987-2998. https://doi.org/10.1021/bi00063a009
  52. Moon, J.-H.; Kim, S. K.; Sehlstedt, U.; Rodger, A.; Norden, B. Biopolymers 1996, 38, 593-606. https://doi.org/10.1002/(SICI)1097-0282(199605)38:5<593::AID-BIP5>3.3.CO;2-P
  53. Tuite, E.; Norden, B. Bioorg. Med. Chem. 1995, 3, 701-711. https://doi.org/10.1016/0968-0896(95)00061-K
  54. Lincoln, P.; Broo, A.; Norden, B. J. Am. Chem. Soc. 1996, 118, 2644-2653. https://doi.org/10.1021/ja953363l
  55. Nair, R. B.; Cullum, B. M.; Murphy, C. J. Inorg. Chem. 1997, 36, 962-965. https://doi.org/10.1021/ic960862u
  56. Onfelt, B.; Lincoln, P.; Norden, B.; Baskin, J. S.; Zewail, A. H. Proc. Natl. Acad. Sci. USA 2000, 97, 5708-5713. https://doi.org/10.1073/pnas.100127397