DOI QR코드

DOI QR Code

Substituent Effects on Conformational Changes in (+)-CSA Doped Polyaniline Derivatives

  • Lee, Eung (Department of Chemistry, The University of Suwon) ;
  • Kim, Eunok (Department of Chemistry, The University of Suwon)
  • Received : 2013.03.21
  • Accepted : 2013.04.22
  • Published : 2013.07.20

Abstract

This paper reports substituent effects on the conformational changes in polyaniline (PAni) derivatives. PAni, poly-o-toluidine (POT), and poly-o-anisidine (POA) were formed by potentiodynamic electropolymerization in aqueous solution containing (+)-camphorsulfonic acid (CSA) as a dopant. UV-Vis spectroscopy and cyclic voltammetry measurements revealed that the methyl group showed a greater steric hindrance than the methoxy group. Further, the doping level decreased with increasing steric hindrance. The sign pattern of the circular dichroism (CD) bands for POA was opposite to that for PAni. However, no CD bands were observed in POT. The steric hindrance caused helical inversion, but at a high level of steric hindrance, the helical conformation could not be adopted, because of the reduced doping level. The reduced crystallinity was greatly affected by the decreased doping level. The steric effect influenced the polymer conformation and the doping level, thus determining the optical activity, morphology, and crystallinity of the PAni derivatives.

Keywords

References

  1. Takano, N.; Seki, C. Electrochemistry 2006, 74, 596. https://doi.org/10.5796/electrochemistry.74.596
  2. Pleus, S.; Schulte, B. J. Solid State Electrochem. 2001, 5, 522. https://doi.org/10.1007/s100080000181
  3. de Lacy Costello, B. P. J; Ratcliffe, N. M.; Sivanand, P. S. Synth. Met. 2003, 139, 43. https://doi.org/10.1016/S0379-6779(02)01247-X
  4. Kaniewska, M.; Sikora, T.; Kataky, R.; Trojanowicz, M. J. Biochem. Biophys. Methods 2008, 70, 1261. https://doi.org/10.1016/j.jbbm.2007.09.006
  5. Ogata, N. Macromol. Symp. 1997, 118, 693. https://doi.org/10.1002/masy.19971180189
  6. Ramos, J. C.; Souto-Maior, R. M.; Navarro, M. Polymer 2006, 47, 8095. https://doi.org/10.1016/j.polymer.2006.09.056
  7. Majidi, M. R.; Kane-Maguire, L. A. P.; Wallace, G. G. Polymer 1994, 35, 3113. https://doi.org/10.1016/0032-3861(94)90427-8
  8. Havinga, E. E.; Bouman, M. M.; Meijer, E. W.; Pomp, A.; Simenon, M. M. J. Synth. Met. 1994, 66, 93. https://doi.org/10.1016/0379-6779(94)90168-6
  9. Ashraf, S. A.; Kane-Maguire, L. A. P.; Majidi, M. R.; Pyne, S. G.; Wallace, G. G. Polymer 1997, 38, 2627. https://doi.org/10.1016/S0032-3861(97)85595-4
  10. Yuan, G. L.; Liu, C.; Kuramoto, N.; Yang, Z. F. Polym. Int. 2010, 59, 1187. https://doi.org/10.1002/pi.2865
  11. Su, S. J.; Kuramoto, N. Macromolecules 2001, 34, 7249. https://doi.org/10.1021/ma010747p
  12. Yuan, G. L.; Kuramoto, N. Macromolecules 2003, 36, 7939. https://doi.org/10.1021/ma030087j
  13. Yan, Y.; Deng, K.; Yu, Z.; Wei, Z. X. Angew. Chem.Int. Ed. 2009, 48, 2003. https://doi.org/10.1002/anie.200805824
  14. Su, S. J.; Takeishi, M.; Kuramoto, N. Macromolecules 2002, 35, 5752. https://doi.org/10.1021/ma0202742
  15. Anjum, M. N.; Zhu, L. H.; Luo, Z. H.; Yan, J. C.; Tang, H. Q. Polymer 2011, 52, 5795. https://doi.org/10.1016/j.polymer.2011.10.038
  16. Majidi, M. R.; Kane-Maguire, L. A. P.; Wallace, G. G. Polymer 1995, 36, 3597. https://doi.org/10.1016/0032-3861(95)92034-C
  17. Bhadra, S.; Khastgir, D. Polym. Test. 2008, 27, 851. https://doi.org/10.1016/j.polymertesting.2008.07.002
  18. Yang, S. M.; Chiang, J. H. Synth. Me. 1991, 41, 761. https://doi.org/10.1016/0379-6779(91)91179-E
  19. Patil, S.; Mahajan, J. R.; More, M. A.; Patil, P. P.; Gosavi, S. W.; Gangal, S. A. Polym. Int. 1998, 46, 99. https://doi.org/10.1002/(SICI)1097-0126(199806)46:2<99::AID-PI939>3.0.CO;2-J
  20. Hao, Q. L.; Lei, W.; Xia, X. F.; Yan, Z. Z.; Yang, X. J.; Lu, L. D.; Wang, X. Electrochim. Acta 2010, 55, 632. https://doi.org/10.1016/j.electacta.2009.09.018
  21. Wei, Y.; Focke, W. W.; Wnek, G. E.; Ray, A.; Macdiarmid, A. G. J. Phy. Chem. 1989, 93, 495. https://doi.org/10.1021/j100338a095
  22. de Torresi, S. I. C.; Bassetto, A. N.; Trasferetti, B. C. J. Solid State Electrochem. 1998, 2, 24. https://doi.org/10.1007/s100080050060
  23. Athawale, A. A.; Kulkarni, M. V.; Chabukswar, V. V. Mater. Chem. Phy. 2002, 73, 106. https://doi.org/10.1016/S0254-0584(01)00338-8
  24. Sasaki, I.; Janata, J.; Josowicz, M. Polym. Degrad. Stab. 2007, 92, 1408. https://doi.org/10.1016/j.polymdegradstab.2007.02.021
  25. Kulkarni, M. V.; Viswanath, A. K. Eur. Polym. J. 2004, 40, 379. https://doi.org/10.1016/j.eurpolymj.2003.10.007
  26. Kumar, P. R.; Kalpana, D.; Renganathan, N. G.; Pitchumani, S. Electrochim. Acta 2008, 54, 442. https://doi.org/10.1016/j.electacta.2008.07.054
  27. Su, S. J.; Kuramoto, N. Chem. Mater. 2001, 13, 4787. https://doi.org/10.1021/cm010663v
  28. Jamal, R.; Abdiryim, T.; Ding, Y. J.; Nurulla, I. J. Polym. Res. 2008, 15, 75. https://doi.org/10.1007/s10965-007-9145-3
  29. Leclerc, M.; D'Aprano, G.; Zotti, G. Synth. Met. 1993, 55, 1527. https://doi.org/10.1016/0379-6779(93)90279-6
  30. Guo, H. L.; Knobler, C. M.; Kaner, R. B. Synth. Met. 1999, 101, 44. https://doi.org/10.1016/S0379-6779(98)00301-4
  31. Zhang, L. J.; Wan, M. X. Thin Solid Films 2005, 477, 24. https://doi.org/10.1016/j.tsf.2004.08.106
  32. Yan, Y.; Yu, Z.; Huang, Y. W.; Yuan, W. X.; Wei, Z. X. Adv. Mater. 2007, 19, 3353. https://doi.org/10.1002/adma.200700846
  33. He, C.; Tan, Y. W.; Li, Y. F. J. Appl. Polym. Sci. 2003, 87, 1537. https://doi.org/10.1002/app.11599
  34. Raut, B. T.; Godse, P. R.; Pawar, S. G.; Chougule, M. A.; Bandgar, D. K.; Patil, V. B. Measurement 2012, 45, 94. https://doi.org/10.1016/j.measurement.2011.09.015
  35. Varma, S. J.; Xavier, F.; Varghese, S.; Jayalekshmi, S. Polym. Int. 2012, 61, 743. https://doi.org/10.1002/pi.4131

Cited by

  1. A Comparative Study of Potentiodynamic and Potentiostatic Modes in the Deposition of Polyaniline vol.37, pp.9, 2016, https://doi.org/10.1002/bkcs.10887
  2. -Toluidin on Platinum Electrode from Aqueous Acidic Solution and Character of the Obtained Polymer pp.07306679, 2016, https://doi.org/10.1002/adv.21649
  3. 전기화학적 중합온도가 Binary 도핑된 키랄 Polyaniline 모폴로지에 미치는 영향 vol.58, pp.5, 2014, https://doi.org/10.5012/jkcs.2014.58.5.456
  4. Chiral conducting polymer nanomaterials: synthesis and applications in enantioselective recognition vol.4, pp.9, 2013, https://doi.org/10.1039/d0qm00103a