References
- Badgujar, D. M.; Talawar, M. B.; Asthana, S. N.; Mahulikar, P. P. J. Hazard. Mater. 2008, 15, 289.
- Pagoria, P. F.; Lee, G. S.; Mitchell, A. R.; Schmidt, R. D. Thermochim. Acta 2002, 384, 187. https://doi.org/10.1016/S0040-6031(01)00805-X
- Chavez, D. E.; Hiskey, M. A. J. Energy Mater. 1999, 17, 357. https://doi.org/10.1080/07370659908201796
- Petrie, M. A.; Sheehy, J. A.; Boatz, J. A.; Rasul, G. J. Am. Chem. Soc. 1997, 119, 8802. https://doi.org/10.1021/ja9714189
- Talawar, M. B.; Sivabalan, R.; Mukundan, T.; Muthurajan, H.; Sikder, A. K.; Gandhe, B. R.; Rao, A. S. J. Hazard. Mater. 2009, 161, 589. https://doi.org/10.1016/j.jhazmat.2008.04.011
- Nair, U. R.; Asthana, S. N.; Rao, A. S.; Gandhe, B. R. Def. Sci. J. 2010, 60, 137. https://doi.org/10.14429/dsj.60.327
- Hiskey M. A.; Goldman N.; Stine J. R. J. Energet. Mater. 1998, 16, 119. https://doi.org/10.1080/07370659808217508
- Rice, B. M.; Byrd, E. F. C.; Mattson, W. D. Struct. Bond. 2007, 125, 153 (High Density Materials). https://doi.org/10.1007/430_2006_053
- Oestmark, H.; Walin, S.; Goede, P. Cent. Eur. J. Energetic Mater. 2007, 4, 83.
- Deblitz, R.; Hrib, C. G.; Plenikowski, G.; Edelmann, F. T. Inorg. Chem. Comm. 2012, 18, 57. https://doi.org/10.1016/j.inoche.2012.01.009
- Kroeger, C. F.; Hummel, L.; Mutscher, M.; Beyer, H. Berichte der Deutschen Chemische Gcsellschaft. 1965, 98, 3025. https://doi.org/10.1002/cber.19650980934
- Ma, H. X.; Song, J. R.; Hu, R. Z. J. Anal. Appl. Pyrolysis. 2008, 83, 145. https://doi.org/10.1016/j.jaap.2008.07.007
- Zhang, J. G.; Zhang, T. L. Acta Chim. Sin. 2000, 58, 1563.
- Zhang, J. G.; Zhang, T. L. Chin. J. Phys. Chem. 2000, 16, 1110.
- Ma, C.; Huang, J.; Ma, H. X. J. Mol. Struct. 2013, 1036, 521. https://doi.org/10.1016/j.molstruc.2012.10.064
- Zhong, Y. T.; Huang, J.; Song, J. R. Chin. J. Chem. 2011, 29, 1672. https://doi.org/10.1002/cjoc.201180243
- Sheldrick, G. M. SHELXL-97, Program for X-ray Crystal Structure Refinement, University of Gottingen: Germany, 1997.
- Roeges, N. P. G. A Guide to the Complete Interpretatin of Infraed Spectra of Organic Structures, Wiley: New York, 1994.
- EI-Shahawy, A. S.; Ahmed, S. M.; Sayed, N. K. Spectrochim. Acta A 2007, 66, 143. https://doi.org/10.1016/j.saa.2006.02.034
- Sundaraganesan, N.; Karpagam, J.; Sebastian, S.; Cornard, J. P. Spectrochim. Acta A 2009, 73, 11. https://doi.org/10.1016/j.saa.2009.01.007
- Socrates, G. Infrared and Raman Characteristic Group Frequencies, 3rd ed.; Wiley: New York, 2001.
- Kissinger, H. E. Anal. Chem. 1957, 29, 1702. https://doi.org/10.1021/ac60131a045
- Ozawa, T. Bull. Chem. Soc. Jpn. 1965, 38, 1881. https://doi.org/10.1246/bcsj.38.1881
- Hu, R. Z.; Yang, A. Q.; Ling, Y. J. Thermochim. Acta 1988, 123, 135. https://doi.org/10.1016/0040-6031(88)80017-0
- Hu, R. Z.; Gao, S. L.; Zhao, F. Q. Thermal Analysis Kinetics, 2nd ed.; Beijing: Science Press, 2008.
- Zhang, T. L.; Hu, R. Z.; Xie, Y. Thermochim. Acta 1994, 244, 17.
Cited by
- Three new compounds based on 4,4′-azo-1,2,4-triazol-5-one: Synthesis, crystal structure and thermal properties vol.32, pp.5, 2016, https://doi.org/10.1007/s40242-016-6114-6
- The crystal structure and thermal analysis of ZTO and its solvent adducts vol.42, pp.5, 2016, https://doi.org/10.1007/s11164-015-2278-9
- Nitrogen-rich 4,4′-azo bis(1,2,4-triazolone) salts—the synthesis and promising properties of a new family of high-density insensitive materials vol.45, pp.8, 2016, https://doi.org/10.1039/C5DT04731E
- Preparation, crystal structure, thermal behavior, and theoretical studies of N,N′-dinitro-4, 4′-azo-bis(1,2,4-triazolone) (DNZTO) vol.71, pp.3, 2016, https://doi.org/10.1515/znb-2015-0121
- -1,2,4-triazol-5-one) vol.72, pp.2, 2016, https://doi.org/10.1107/S2053229616001509
- Thermogravimetric analysis, kinetic study, and pyrolysis–GC/MS analysis of 1,1ʹ-azobis-1,2,3-triazole and 4,4ʹ-azobis-1,2,4-triazole vol.12, pp.1, 2018, https://doi.org/10.1186/s13065-018-0381-x
- Synthesis, Structure Characteristic and Thermal Behavior of Two New Metal-organic Azo-triazole Compounds: [Zn(phen)3]·ZTO·6H2O and [Cu(phen)3]·ZTO·6H2O pp.2210-3171, 2018, https://doi.org/10.1007/s40242-018-8051-z
- -1,2,4-triazol-5-one based nitrogen-rich salts as potential energetic compounds vol.8, pp.42, 2018, https://doi.org/10.1039/C7RA13424J
- Crystal structure of tetraqua((E)-4,4′-(diazene-1,2-diyl)bis(5-oxo-4,5-dihydro-1,2,4-triazol-1-ide)-κ2N:O)barium(II), C4H10N8O6Ba vol.231, pp.2, 2013, https://doi.org/10.1515/ncrs-2015-0164
- Crystal structure of potassium (E)-5-oxo-4-((5-oxo-1H-1,2,4-triazol-4(5H)-yl)diazenyl)-4,5-dihydro-1,2,4-triazol-1-ide – (E)-4,4-diazene-1,2-diylbis(2,4-dihydro-3H-1,2,4-triazol-3-one) – vol.231, pp.3, 2013, https://doi.org/10.1515/ncrs-2015-0218
- Preparation, crystal structure, thermal behavior and DFT calculations of two acetyl triazolone derviatives vol.1146, pp.None, 2017, https://doi.org/10.1016/j.molstruc.2017.05.124
- Synthesis, characterization, thermal properties and theoretical investigation on Bis(guanidinium) 4,4′- Azo-1H-1,2,4-triazol-5-one vol.1147, pp.None, 2013, https://doi.org/10.1016/j.molstruc.2017.06.115