DOI QR코드

DOI QR Code

Preparation of 27Ni6Zr4O143M(M=Mg, Ca, Sr, or Ba)O/70 Zeolite Y Catalysts and Hydrogen-rich Gas Production by Ethanol Steam Reforming

  • Kim, Dongjin (Department of Chemistry, College of Science, Yeungnam University) ;
  • Lee, Jun Su (Department of Chemistry, College of Science, Yeungnam University) ;
  • Lee, Gayoung (Department of Chemistry, College of Science, Yeungnam University) ;
  • Choi, Byung-Hyun (Korean Institutes of Ceramic Engineering and Technology (KICET)) ;
  • Ji, Mi-Jung (Korean Institutes of Ceramic Engineering and Technology (KICET)) ;
  • Park, Sun-Min (Korean Institutes of Ceramic Engineering and Technology (KICET)) ;
  • Kang, Misook (Department of Chemistry, College of Science, Yeungnam University)
  • Received : 2013.02.07
  • Accepted : 2013.04.16
  • Published : 2013.07.20

Abstract

In this study the effects of adding alkaline-earth (IIA) metal oxides to NiZr-loaded Zeolite Y catalysts were investigated on hydrogen rich production by ethanol steam reforming (ESR). Four kinds of alkaline-earth metal (Mg, Ca, Sr, or Ba) oxides of 3.0% by weight were loaded between the $Ni_6Zr_4O_{14}$ main catalytic species and the microporous Zeolite Y support. The characterizations of these catalysts were examined by XRD, TEM, $H_2$-TPR, $NH_3$-TPD, and XPS. Catalytic performances during ESR were found to depend on the basicity of the added alkaline-earth metal oxides and $H_2$ production and ethanol conversion were maximized to 82% and 98% respectively in 27($Ni_6Zr_4O_{14}$)3MgO/70Zeolite Y catalyst at $600^{\circ}C$. Many carbon deposits and carbon nano fibers were seen on the surface of $30Ni_6Zr_4O_{14}$/70Zeolite Y catalyst but lesser amounts were observed on alkaline-earth metal oxide-loaded 27($Ni_6Zr_4O_{14}$)3MO/70Zeolite Y catalysts in TEM photos after ESR. This study demonstrates that hydrogen yields from ESR are closely related to the acidities of catalysts and that alkaline-earth metal oxides reduce the acidities of 27($Ni_6Zr_4O_{14}$)3MO/70Zeolite Y catalysts and promote hydrogen evolution by preventing progression to hydrocarbons.

Keywords

References

  1. Vizcaino, A. J.; Lindo, M.; Carrero, A.; Calles, J. A. Inter. J. Hydrogen Energy 2010, 37, 1985.
  2. Al-Hamamre, Z.; Hararah, M. A. Inter. J. Hydrogen Energy 2010, 35, 5367. https://doi.org/10.1016/j.ijhydene.2010.03.018
  3. Youn, M. H.; Seo, J. G.; Song, Inter. J. Hydrogen Energy 2010, 35, 3490. https://doi.org/10.1016/j.ijhydene.2010.01.121
  4. Wang, W.; Wang, Y. Inter. J. Hydrogen Energy 2009, 34, 5382. https://doi.org/10.1016/j.ijhydene.2009.04.054
  5. Jing, Q.; Lou, H.; Mo, L.; Fei, J.; Zheng, Z. J. Mol. Catal. A: Chem. 2004, 212, 211. https://doi.org/10.1016/j.molcata.2003.10.041
  6. Lindo, M.; Vizcaino, A. J.; Calles, J. A.; Carrero, A. Inter. J. Hydrogen Energy 2010, 35, 5895. https://doi.org/10.1016/j.ijhydene.2009.12.120
  7. Nageswara, R. P.; Anamika, M.; Deepak, K. Chem. Eng. J. 2011, 167, 578. https://doi.org/10.1016/j.cej.2010.09.081
  8. Prakash, D. V.; Alirio, E. R. Chem. Eng. J. 2006, 117, 39. https://doi.org/10.1016/j.cej.2005.12.008
  9. Bang, Y.; Seo, J. G.; Song, I. K. Inter. J. Hydrogen Energy 2011, 36, 8307. https://doi.org/10.1016/j.ijhydene.2011.04.126
  10. Gabriella, G.; Alberto, L.; Paola, R.; Guido, B. Appl. Catal. B: Environ. 2013, 129, 460. https://doi.org/10.1016/j.apcatb.2012.09.036
  11. Xiang, L.; Gong, Y. L.; Li, J. C.; Wang, Z. W. Appl. Surf. Sci. 2004, 239, 94. https://doi.org/10.1016/j.apsusc.2004.05.087
  12. Borowiecki, T.; Denis, A.; Gac, W.; Dziembaj, R.; Piwowarska, Z.; Drozdek, M. Appl. Catal. A: Gen. 2004, 274, 259. https://doi.org/10.1016/j.apcata.2004.07.009
  13. Vizcaino, A. J.; Carrero, A.; Calles, J. A. Inter. J. Hydrogen Energy 2007, 32, 1450. https://doi.org/10.1016/j.ijhydene.2006.10.024
  14. Prakash, B.; Deepak, K. Inter. J. Hydrogen Energy 2007, 32, 969. https://doi.org/10.1016/j.ijhydene.2006.09.031
  15. Li, S.; Li, M.; Zhang, C.; Wang, S.; Ma, X.; Gong, J. Inter. J. Hydrogen Energy 2012, 37, 2940. https://doi.org/10.1016/j.ijhydene.2011.01.009
  16. Llenia, R.; Cerare, B.; Claudia, L. B.; Valentina, N.; Michela, S.; Federica, M.; Elisabetta, F.; Gianguido, R.; Alessandro, D. M. Appl. Catal. B: Environ. 2012, 117-118, 384. https://doi.org/10.1016/j.apcatb.2012.02.006
  17. Kwak, B. S.; Kim, J.; Kang, M. Inter. J. Hydrogen Energy 2010, 35, 11829. https://doi.org/10.1016/j.ijhydene.2010.08.073
  18. Sun, J.; Qiu, T.; Wang, J.; Liu, H.; Yang, W. Mater. Lett., in press.
  19. Sangwichien, C.; Aranovich, G. L.; Donohue, M. D. Colloids. Surf. A: Physicochem. Eng. Aspects 2002, 206, 313. https://doi.org/10.1016/S0927-7757(02)00048-1
  20. Zhang, W.; Burckle, E. C.; Smirniotis, P. G. Micropor. Mesopor. Mater. 1999, 33, 173. https://doi.org/10.1016/S1387-1811(99)00136-5
  21. Tressaud, A.; Durand, E.; Labrugere, C. J. Fluorine Chem. 2004, 125, 1639. https://doi.org/10.1016/j.jfluchem.2004.09.022
  22. Li, Y.; Li, D.; Wang, G. Catal. Today 2011, 162, 1. https://doi.org/10.1016/j.cattod.2010.12.042