References
- Fujishima, A.; Honda, K. Nature 1972, 238, 37. https://doi.org/10.1038/238037a0
- Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. Renewable Sustainable Energ. Rev. 2007, 11, 401. https://doi.org/10.1016/j.rser.2005.01.009
- Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446. https://doi.org/10.1021/cr1002326
- Mohapatra, S. K.; Misra, M.; Mahajan, V. K.; Raja, K. S. J. Catal. 2007, 246, 362. https://doi.org/10.1016/j.jcat.2006.12.020
- Liu, M.; Snapp, N.; Park, H. Chem. Sci. 2011, 2, 80. https://doi.org/10.1039/c0sc00321b
- Hwang, Y. J.; Hahn, C.; Liu, B.; Yang, P. ACS Nano 2012, 6, 5060. https://doi.org/10.1021/nn300679d
- Mor, G. K.; Prakasam, H. E.; Varghese, O. K.; Shankar, K.; Grimes, C. A. Nano Lett. 2007, 7, 2356. https://doi.org/10.1021/nl0710046
- Linsebigler, A. L.; Lu, G.; Yates, J. T. Chem. Rev. 1995, 95, 735. https://doi.org/10.1021/cr00035a013
- Shi, J.; Hara, Y.; Sun, C.; Anderson, M. A.; Wang, X. Nano Lett. 2011, 11, 3413.
- Ma, X.; Wu, Y.; Lu, Y, Xu, J.; Wang, Y.; Zhu, Y. J. Phys. Chem. C 2011, 115, 16963. https://doi.org/10.1021/jp202750w
- Nakamura, R.; Tanaka, T.; Nakato, Y. J. Phys. Chem. B 2004, 108, 10617.
- Sang, L.; Zhi-yu, Z.; Guang-mei, B.; Chun-xu, D.; Chong-fang, M. Int. J. Hydrogen Energy 2012, 37, 854. https://doi.org/10.1016/j.ijhydene.2011.04.040
- Kang, S. H.; Kim, J.-Y.; Kim, H. S.; Sung, Y.-E. J. Ind. Eng. Chem. 2008, 14, 52. https://doi.org/10.1016/j.jiec.2007.06.004
- Prakasam, H. E.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. J. Phys. Chem. C 2007, 111, 7235. https://doi.org/10.1021/jp070273h
- Kang, C.; Xie, Y.; Xie, E. Optoelectron. Adv. Mater.-Rapid Commun. 2011, 5, 518.
- Ji, Y.; Lin, K.-C.; Zheng, H.; Zhu, J.-J.; Samia, A. C. S. Electrochem. Comm. 2011, 13, 1013. https://doi.org/10.1016/j.elecom.2011.06.030
- Mir, N.; Lee, K.; Paramasivam, I.; Schmuki, P. Chem. Eur. J. 2012, 18, 11862. https://doi.org/10.1002/chem.201202002
- Kang, S. H.; Lim, J.-W.; Kim, H. S.; Kim, J.-Y.; Sung, Y.-E. Chem. Mater. 2009, 21, 2777. https://doi.org/10.1021/cm900378c
- Chae, Y.; Park. J.; Mori, S.; Suzuki, M. J. Ind. Eng. Chem. 2012, 18, 1572. https://doi.org/10.1016/j.jiec.2012.01.049
- Kang, S. H.; Kim, J.-Y.; Sung, Y.-E. J. Phys. Chem. C 2007, 111, 9614. https://doi.org/10.1021/jp071504n
- Lazarus, M. S.; Sham, T. K. Chem. Phys. Lett. 1982, 92, 670. https://doi.org/10.1016/0009-2614(82)83672-5
- Gao, H.; Dai, Z. D.; Qu, Y. Chem. Eng. Technol. 2009, 32, 867. https://doi.org/10.1002/ceat.200800624
- Barsoukov, E.; Macdonald, J. R. Impedance Spectroscopy Theory, Experiment, and Applications; Wiley: New Jersey, 2005; chapter 4.
- Fabregat-Santiago, F.; Garcia-Belmonte, G.; Bisquert, J.; Bogdanoff, P.; Zaban, A. J. Electrochem. Soc. 2003, 150, E293. https://doi.org/10.1149/1.1568741
- Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R. C.; Wang, C.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11, 3026. https://doi.org/10.1021/nl201766h
Cited by
- Some interesting properties of black hydrogen-treated TiO2 nanowires and their potential application in solar energy conversion vol.58, pp.12, 2015, https://doi.org/10.1007/s11426-015-5400-3
- and Its Enhanced Visible-Light-Driven Photocatalytic and Electrochemical Performance vol.120, pp.18, 2016, https://doi.org/10.1021/acs.jpcc.6b00457
- Modified photo-electrochemical and photo-voltaic properties of solvothermally crystallised TiO2 nanotube arrays vol.27, pp.12, 2016, https://doi.org/10.1007/s10854-016-5248-0
- One-Dimensional Metal-Oxide Nanostructures for Solar Photocatalytic Water-Splitting vol.46, pp.8, 2017, https://doi.org/10.1007/s11664-017-5491-z
- Improved Charge Carrier Transport of Hydrogen-Treated Copper Tungstate: Photoelectrochemical and Computational Study vol.163, pp.10, 2016, https://doi.org/10.1149/2.0701610jes
- Electrochemical Fabrication of Ternary Black Ti‐Mo‐Ni Oxide Nanotube Arrays for Enhanced Photoelectrochemical Water Oxidation vol.5, pp.39, 2013, https://doi.org/10.1002/slct.202003491