DOI QR코드

DOI QR Code

Effect of Hydrogen Treatment on Anatase TiO2 Nanotube Arrays for Photoelectrochemical Water Splitting

  • Kim, Hyun Sik (School of Chemical & Biological Engineering, Seoul National University) ;
  • Kang, Soon Hyung (Department of Chemistry Education, Chonnam National University)
  • Received : 2013.01.22
  • Accepted : 2013.04.13
  • Published : 2013.07.20

Abstract

Hydrogen ($H_2$) treatment using a two-step $TiO_2$ nanotube (TONT) film was performed under various annealing temperatures from $350^{\circ}C$ to $550^{\circ}C$ and significantly influenced the extent of hydrogen treatment in the film. Compared with pure TONT films, the hydrogen-treated TONT (H:TONT) film showed substantial improvement of material features from structural, optical and electronic aspects. In particular, the extent of enhancement was remarkable with increasing annealing temperature. Light absorption by the H:TONT film extended toward the visible region, which was attributable to the formation of sub-band-gap states between the conduction and valence bands, resulting from oxygen vacancies due to the $H_2$ treatment. This increased donor concentration about 1.5 times higher and improved electrical conductivity of the TONT films. Based on these analyses and results, photoelectrochemical (PEC) performance was evaluated and showed that the H:TONT film prepared at $550^{\circ}C$ exhibited optimal PEC performance. Approximately twice higher photocurrent density of 0.967 $mA/cm^2$ at 0.32 V vs. NHE was achieved for the H:TONT film ($550^{\circ}C$) versus 0.43 $mA/cm^2$ for the pure TONT film. Moreover, the solar-to-hydrogen efficiency (STH, ${\eta}$) of the H:TONT film was 0.95%, whereas a 0.52% STH efficiency was acquired for the TONT film. These results demonstrate that hydrogen treatment of TONT film is a simple and effective tool to enhance PEC performance with modifying the properties of the original material.

Keywords

References

  1. Fujishima, A.; Honda, K. Nature 1972, 238, 37. https://doi.org/10.1038/238037a0
  2. Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. Renewable Sustainable Energ. Rev. 2007, 11, 401. https://doi.org/10.1016/j.rser.2005.01.009
  3. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446. https://doi.org/10.1021/cr1002326
  4. Mohapatra, S. K.; Misra, M.; Mahajan, V. K.; Raja, K. S. J. Catal. 2007, 246, 362. https://doi.org/10.1016/j.jcat.2006.12.020
  5. Liu, M.; Snapp, N.; Park, H. Chem. Sci. 2011, 2, 80. https://doi.org/10.1039/c0sc00321b
  6. Hwang, Y. J.; Hahn, C.; Liu, B.; Yang, P. ACS Nano 2012, 6, 5060. https://doi.org/10.1021/nn300679d
  7. Mor, G. K.; Prakasam, H. E.; Varghese, O. K.; Shankar, K.; Grimes, C. A. Nano Lett. 2007, 7, 2356. https://doi.org/10.1021/nl0710046
  8. Linsebigler, A. L.; Lu, G.; Yates, J. T. Chem. Rev. 1995, 95, 735. https://doi.org/10.1021/cr00035a013
  9. Shi, J.; Hara, Y.; Sun, C.; Anderson, M. A.; Wang, X. Nano Lett. 2011, 11, 3413.
  10. Ma, X.; Wu, Y.; Lu, Y, Xu, J.; Wang, Y.; Zhu, Y. J. Phys. Chem. C 2011, 115, 16963. https://doi.org/10.1021/jp202750w
  11. Nakamura, R.; Tanaka, T.; Nakato, Y. J. Phys. Chem. B 2004, 108, 10617.
  12. Sang, L.; Zhi-yu, Z.; Guang-mei, B.; Chun-xu, D.; Chong-fang, M. Int. J. Hydrogen Energy 2012, 37, 854. https://doi.org/10.1016/j.ijhydene.2011.04.040
  13. Kang, S. H.; Kim, J.-Y.; Kim, H. S.; Sung, Y.-E. J. Ind. Eng. Chem. 2008, 14, 52. https://doi.org/10.1016/j.jiec.2007.06.004
  14. Prakasam, H. E.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. J. Phys. Chem. C 2007, 111, 7235. https://doi.org/10.1021/jp070273h
  15. Kang, C.; Xie, Y.; Xie, E. Optoelectron. Adv. Mater.-Rapid Commun. 2011, 5, 518.
  16. Ji, Y.; Lin, K.-C.; Zheng, H.; Zhu, J.-J.; Samia, A. C. S. Electrochem. Comm. 2011, 13, 1013. https://doi.org/10.1016/j.elecom.2011.06.030
  17. Mir, N.; Lee, K.; Paramasivam, I.; Schmuki, P. Chem. Eur. J. 2012, 18, 11862. https://doi.org/10.1002/chem.201202002
  18. Kang, S. H.; Lim, J.-W.; Kim, H. S.; Kim, J.-Y.; Sung, Y.-E. Chem. Mater. 2009, 21, 2777. https://doi.org/10.1021/cm900378c
  19. Chae, Y.; Park. J.; Mori, S.; Suzuki, M. J. Ind. Eng. Chem. 2012, 18, 1572. https://doi.org/10.1016/j.jiec.2012.01.049
  20. Kang, S. H.; Kim, J.-Y.; Sung, Y.-E. J. Phys. Chem. C 2007, 111, 9614. https://doi.org/10.1021/jp071504n
  21. Lazarus, M. S.; Sham, T. K. Chem. Phys. Lett. 1982, 92, 670. https://doi.org/10.1016/0009-2614(82)83672-5
  22. Gao, H.; Dai, Z. D.; Qu, Y. Chem. Eng. Technol. 2009, 32, 867. https://doi.org/10.1002/ceat.200800624
  23. Barsoukov, E.; Macdonald, J. R. Impedance Spectroscopy Theory, Experiment, and Applications; Wiley: New Jersey, 2005; chapter 4.
  24. Fabregat-Santiago, F.; Garcia-Belmonte, G.; Bisquert, J.; Bogdanoff, P.; Zaban, A. J. Electrochem. Soc. 2003, 150, E293. https://doi.org/10.1149/1.1568741
  25. Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R. C.; Wang, C.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11, 3026. https://doi.org/10.1021/nl201766h

Cited by

  1. Some interesting properties of black hydrogen-treated TiO2 nanowires and their potential application in solar energy conversion vol.58, pp.12, 2015, https://doi.org/10.1007/s11426-015-5400-3
  2. and Its Enhanced Visible-Light-Driven Photocatalytic and Electrochemical Performance vol.120, pp.18, 2016, https://doi.org/10.1021/acs.jpcc.6b00457
  3. Modified photo-electrochemical and photo-voltaic properties of solvothermally crystallised TiO2 nanotube arrays vol.27, pp.12, 2016, https://doi.org/10.1007/s10854-016-5248-0
  4. One-Dimensional Metal-Oxide Nanostructures for Solar Photocatalytic Water-Splitting vol.46, pp.8, 2017, https://doi.org/10.1007/s11664-017-5491-z
  5. Improved Charge Carrier Transport of Hydrogen-Treated Copper Tungstate: Photoelectrochemical and Computational Study vol.163, pp.10, 2016, https://doi.org/10.1149/2.0701610jes
  6. Electrochemical Fabrication of Ternary Black Ti‐Mo‐Ni Oxide Nanotube Arrays for Enhanced Photoelectrochemical Water Oxidation vol.5, pp.39, 2013, https://doi.org/10.1002/slct.202003491