DOI QR코드

DOI QR Code

Phosphorylation-Dependent Mobility Shift of Proteins on SDS-PAGE is Due to Decreased Binding of SDS

  • Lee, Chang-Ro (Department of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Park, Young-Ha (Department of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Kim, Yeon-Ran (Department of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Peterkofsky, Alan (Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health) ;
  • Seok, Yeong-Jae (Department of Biological Sciences and Institute of Microbiology, Seoul National University)
  • Received : 2013.03.27
  • Accepted : 2013.04.12
  • Published : 2013.07.20

Abstract

While many eukaryotic and some prokaryotic proteins show a phosphorylation-dependent mobility shift (PDMS) on SDS-PAGE, the molecular mechanism for this phenomenon had not been elucidated. We have recently shown that the distribution of negatively charged amino acids around the phosphorylation site is important for the PDMS of some proteins. Here, we show that replacement of the phosphorylation site with a negatively charged amino acid results in a similar degree of the mobility shift of a protein as phosphorylation, indicating that the PDMS is due to the introduction of a negative charge by phosphorylation. Compared with a protein showing no shift, one showing a retarded mobility on SDS-PAGE had a decreased capacity for SDS binding. The elucidation of the consensus sequence (${\Theta}X_{1-3}{\Theta}X_{1-3}{\Theta}$, where ${\Theta}$ corresponds to an acidic function) for a PDMS suggests a general strategy for mutagenizing a phosphorylatable protein resulting in a PDMS.

Keywords

References

  1. Deutscher, J.; Francke, C.; Postma, P. W. Microbiol. Mol. Biol. Rev. 2006, 70, 939-1031. https://doi.org/10.1128/MMBR.00024-06
  2. Koo, B. M.; Yoon, M. J.; Lee, C. R.; Nam, T. W.; Choe, Y. J.; Jaffe, H.; Peterkofsky, A.; Seok, Y. J. J. Biol. Chem. 2004, 279, 31613-31621. https://doi.org/10.1074/jbc.M405048200
  3. Lee, S. J.; Boos, W.; Bouche, J. P.; Plumbridge, J. EMBO J. 2000, 19, 5353-5361. https://doi.org/10.1093/emboj/19.20.5353
  4. Lux, R.; Jahreis, K.; Bettenbrock, K.; Parkinson, J. S.; Lengeler, J. W. Proc. Natl. Acad. Sci. USA 1995, 92, 11583-11587. https://doi.org/10.1073/pnas.92.25.11583
  5. Nam, T. W.; Cho, S. H.; Shin, D.; Kim, J. H.; Jeong, J. Y.; Lee, J. H.; Roe, J. H.; Peterkofsky, A.; Kang, S. O.; Ryu, S.; Seok, Y. J. EMBO J. 2001, 20, 491-498. https://doi.org/10.1093/emboj/20.3.491
  6. Park, Y. H.; Lee, B. R.; Seok, Y. J.; Peterkofsky, A. J. Biol. Chem. 2006, 281, 6448-6454. https://doi.org/10.1074/jbc.M512672200
  7. Seok, Y. J.; Sondej, M.; Badawi, P.; Lewis, M. S.; Briggs, M. C.; Jaffe, H.; Peterkofsky, A. J. Biol. Chem. 1997, 272, 26511-26521. https://doi.org/10.1074/jbc.272.42.26511
  8. Tanaka, Y.; Kimata, K.; Aiba, H. EMBO J. 2000, 19, 5344-5352. https://doi.org/10.1093/emboj/19.20.5344
  9. Peterkofsky, A.; Wang, G.; Seok, Y. J. Arch. Biochem. Biophys. 2006, 453, 101-107. https://doi.org/10.1016/j.abb.2006.01.004
  10. Pfluger-Grau, K.; Görke, B. Trends Microbiol. 2010, 18, 205-214. https://doi.org/10.1016/j.tim.2010.02.003
  11. Powell, B. S.; Court, D. L.; Inada, T.; Nakamura, Y.; Michotey, V.; Cui, X.; Reizer, A.; Saier, M. H., Jr.; Reizer, J. J. Biol. Chem. 1995, 270, 4822-4839. https://doi.org/10.1074/jbc.270.9.4822
  12. Lee, C. R.; Cho, S. H.; Kim, H. J.; Kim, M.; Peterkofsky, A.; Seok, Y. J. Mol. Microbiol. 2010, 78, 1468-1483. https://doi.org/10.1111/j.1365-2958.2010.07419.x
  13. Lee, C. R.; Cho, S. H.; Yoon, M. J.; Peterkofsky, A.; Seok, Y. J. Proc. Natl. Acad. Sci. USA 2007, 104, 4124-4129. https://doi.org/10.1073/pnas.0609897104
  14. Luttmann, D.; Gopel, Y.; Gorke, B. Mol. Microbiol. 2012, 86, 96-110. https://doi.org/10.1111/j.1365-2958.2012.08176.x
  15. Luttmann, D.; Heermann, R.; Zimmer, B.; Hillmann, A.; Rampp, I. S.; Jung, K.; Gorke, B. Mol Microbiol 2009, 72, 978-994. https://doi.org/10.1111/j.1365-2958.2009.06704.x
  16. Pfluger, K.; de Lorenzo, V. J. Biol. Chem. 2007, 282, 18206-18211. https://doi.org/10.1074/jbc.M611110200
  17. Prell, J.; Mulley, G.; Haufe, F.; White, J. P.; Williams, A.; Karunakaran, R.; Downie, J. A.; Poole, P. S. Mol. Microbiol. 2012, 84, 117-129. https://doi.org/10.1111/j.1365-2958.2012.08014.x
  18. Hogema, B. M.; Arents, J. C.; Bader, R.; Eijkemans, K.; Inada, T.; Aiba, H.; Postma, P. W. Mol. Microbiol. 1998, 28, 755-765.
  19. Lee, J. W.; Helmann, J. D. J. Biol. Chem. 2006, 281, 23567-23578. https://doi.org/10.1074/jbc.M603968200
  20. Nam, T. W.; Park, Y. H.; Jeong, H. J.; Ryu, S.; Seok, Y. J. Nucleic Acids Res. 2005, 33, 6712-6722. https://doi.org/10.1093/nar/gki978
  21. Lee, C. R.; Koo, B. M.; Cho, S. H.; Kim, Y. J.; Yoon, M. J.; Peterkofsky, A.; Seok, Y. J. Mol. Microbiol. 2005, 58, 334-344. https://doi.org/10.1111/j.1365-2958.2005.04834.x
  22. LaVallie, E. R.; DiBlasio, E. A.; Kovacic, S.; Grant, K. L.; Schendel, P. F.; McCoy, J. M. Biotechnology (NY) 1993, 11, 187-193. https://doi.org/10.1038/nbt0293-187
  23. Reddy, P.; Peterkofsky, A.; McKenney, K. Nucleic Acids Res. 1989, 17, 10473-10488. https://doi.org/10.1093/nar/17.24.10473
  24. Rath, A.; Glibowicka, M.; Nadeau, V. G.; Chen, G.; Deber, C. M. Proc. Natl. Acad. Sci. USA 2009, 106, 1760-1765. https://doi.org/10.1073/pnas.0813167106
  25. Lee, C. R.; Park, Y. H.; Kim, M.; Kim, Y. R.; Park, S.; Peterkofsky, A.; Seok, Y. J. Mol. Microbiol. 2013, in press.
  26. Reynolds, J. A.; Tanford, C. Proc. Natl. Acad. Sci. USA 1970, 66, 1002-1007. https://doi.org/10.1073/pnas.66.3.1002
  27. Dutta, A.; Kim, T. Y.; Moeller, M.; Wu, J.; Alexiev, U.; Klein-Seetharaman, J. Biochemistry 2010, 49, 6329-6340. https://doi.org/10.1021/bi100339x
  28. Zhou, X. M.; Liu, Y.; Payne, G.; Lutz, R. J.; Chittenden, T. J. Biol. Chem. 2000, 275, 25046-25051. https://doi.org/10.1074/jbc.M002526200

Cited by

  1. Conserved active site cysteine residue of archaeal THI4 homolog is essential for thiamine biosynthesis in Haloferax volcanii vol.14, pp.1, 2014, https://doi.org/10.1186/s12866-014-0260-0
  2. A model for activation of the hexadecameric phosphorylase kinase complex deduced from zero-length oxidative crosslinking vol.24, pp.12, 2015, https://doi.org/10.1002/pro.2804
  3. Stereoisomer-Specific Anticancer Activities of Ginsenoside Rg3 and Rh2 in HepG2 Cells: Disparity in Cytotoxicity and Autophagy-Inducing Effects Due to 20(S)-Epimers vol.38, pp.1, 2015, https://doi.org/10.1248/bpb.b14-00603
  4. Lymphocyte phosphatase-associated phosphoprotein proteoforms analyzed using monoclonal antibodies vol.4, pp.10, 2015, https://doi.org/10.1038/cti.2015.22
  5. Fine-tuning of amino sugar homeostasis by EIIANtr in Salmonella Typhimurium vol.6, pp.1, 2016, https://doi.org/10.1038/srep33055
  6. The tumor promoter-activated protein kinase Cs are a system for regulating filopodia vol.74, pp.8, 2017, https://doi.org/10.1002/cm.21373
  7. Determination of protein phosphorylation by polyacrylamide gel electrophoresis vol.57, pp.2, 2019, https://doi.org/10.1007/s12275-019-9021-y
  8. Deciphering the Interplay among Multisite Phosphorylation, Interaction Dynamics, and Conformational Transitions in a Tripartite Protein System vol.2, pp.7, 2016, https://doi.org/10.1021/acscentsci.6b00053
  9. Polar landmark protein HubP recruits flagella assembly protein FapA under glucose limitation in Vibrio vulnificus vol.112, pp.1, 2013, https://doi.org/10.1111/mmi.14268
  10. A Highly Versatile Expression System for the Production of Multiply Phosphorylated Proteins vol.14, pp.7, 2013, https://doi.org/10.1021/acschembio.9b00307
  11. Phosphorylation and Dephosphorylation of Tau Protein by the Catalytic Subunit of PKA, as Probed by Electrophoretic Mobility Retard vol.79, pp.3, 2013, https://doi.org/10.3233/jad-201077
  12. Pleiotropic Roles of NOTCH1 Signaling in the Loss of Maturational Arrest of Human Osteoarthritic Chondrocytes vol.22, pp.21, 2013, https://doi.org/10.3390/ijms222112012
  13. Testicular inducing steroidogenic cells trigger sex change in groupers vol.11, pp.1, 2013, https://doi.org/10.1038/s41598-021-90691-9