References
- Deutscher, J.; Francke, C.; Postma, P. W. Microbiol. Mol. Biol. Rev. 2006, 70, 939-1031. https://doi.org/10.1128/MMBR.00024-06
- Koo, B. M.; Yoon, M. J.; Lee, C. R.; Nam, T. W.; Choe, Y. J.; Jaffe, H.; Peterkofsky, A.; Seok, Y. J. J. Biol. Chem. 2004, 279, 31613-31621. https://doi.org/10.1074/jbc.M405048200
- Lee, S. J.; Boos, W.; Bouche, J. P.; Plumbridge, J. EMBO J. 2000, 19, 5353-5361. https://doi.org/10.1093/emboj/19.20.5353
- Lux, R.; Jahreis, K.; Bettenbrock, K.; Parkinson, J. S.; Lengeler, J. W. Proc. Natl. Acad. Sci. USA 1995, 92, 11583-11587. https://doi.org/10.1073/pnas.92.25.11583
- Nam, T. W.; Cho, S. H.; Shin, D.; Kim, J. H.; Jeong, J. Y.; Lee, J. H.; Roe, J. H.; Peterkofsky, A.; Kang, S. O.; Ryu, S.; Seok, Y. J. EMBO J. 2001, 20, 491-498. https://doi.org/10.1093/emboj/20.3.491
- Park, Y. H.; Lee, B. R.; Seok, Y. J.; Peterkofsky, A. J. Biol. Chem. 2006, 281, 6448-6454. https://doi.org/10.1074/jbc.M512672200
- Seok, Y. J.; Sondej, M.; Badawi, P.; Lewis, M. S.; Briggs, M. C.; Jaffe, H.; Peterkofsky, A. J. Biol. Chem. 1997, 272, 26511-26521. https://doi.org/10.1074/jbc.272.42.26511
- Tanaka, Y.; Kimata, K.; Aiba, H. EMBO J. 2000, 19, 5344-5352. https://doi.org/10.1093/emboj/19.20.5344
- Peterkofsky, A.; Wang, G.; Seok, Y. J. Arch. Biochem. Biophys. 2006, 453, 101-107. https://doi.org/10.1016/j.abb.2006.01.004
- Pfluger-Grau, K.; Görke, B. Trends Microbiol. 2010, 18, 205-214. https://doi.org/10.1016/j.tim.2010.02.003
- Powell, B. S.; Court, D. L.; Inada, T.; Nakamura, Y.; Michotey, V.; Cui, X.; Reizer, A.; Saier, M. H., Jr.; Reizer, J. J. Biol. Chem. 1995, 270, 4822-4839. https://doi.org/10.1074/jbc.270.9.4822
- Lee, C. R.; Cho, S. H.; Kim, H. J.; Kim, M.; Peterkofsky, A.; Seok, Y. J. Mol. Microbiol. 2010, 78, 1468-1483. https://doi.org/10.1111/j.1365-2958.2010.07419.x
- Lee, C. R.; Cho, S. H.; Yoon, M. J.; Peterkofsky, A.; Seok, Y. J. Proc. Natl. Acad. Sci. USA 2007, 104, 4124-4129. https://doi.org/10.1073/pnas.0609897104
- Luttmann, D.; Gopel, Y.; Gorke, B. Mol. Microbiol. 2012, 86, 96-110. https://doi.org/10.1111/j.1365-2958.2012.08176.x
- Luttmann, D.; Heermann, R.; Zimmer, B.; Hillmann, A.; Rampp, I. S.; Jung, K.; Gorke, B. Mol Microbiol 2009, 72, 978-994. https://doi.org/10.1111/j.1365-2958.2009.06704.x
- Pfluger, K.; de Lorenzo, V. J. Biol. Chem. 2007, 282, 18206-18211. https://doi.org/10.1074/jbc.M611110200
- Prell, J.; Mulley, G.; Haufe, F.; White, J. P.; Williams, A.; Karunakaran, R.; Downie, J. A.; Poole, P. S. Mol. Microbiol. 2012, 84, 117-129. https://doi.org/10.1111/j.1365-2958.2012.08014.x
- Hogema, B. M.; Arents, J. C.; Bader, R.; Eijkemans, K.; Inada, T.; Aiba, H.; Postma, P. W. Mol. Microbiol. 1998, 28, 755-765.
- Lee, J. W.; Helmann, J. D. J. Biol. Chem. 2006, 281, 23567-23578. https://doi.org/10.1074/jbc.M603968200
- Nam, T. W.; Park, Y. H.; Jeong, H. J.; Ryu, S.; Seok, Y. J. Nucleic Acids Res. 2005, 33, 6712-6722. https://doi.org/10.1093/nar/gki978
- Lee, C. R.; Koo, B. M.; Cho, S. H.; Kim, Y. J.; Yoon, M. J.; Peterkofsky, A.; Seok, Y. J. Mol. Microbiol. 2005, 58, 334-344. https://doi.org/10.1111/j.1365-2958.2005.04834.x
- LaVallie, E. R.; DiBlasio, E. A.; Kovacic, S.; Grant, K. L.; Schendel, P. F.; McCoy, J. M. Biotechnology (NY) 1993, 11, 187-193. https://doi.org/10.1038/nbt0293-187
- Reddy, P.; Peterkofsky, A.; McKenney, K. Nucleic Acids Res. 1989, 17, 10473-10488. https://doi.org/10.1093/nar/17.24.10473
- Rath, A.; Glibowicka, M.; Nadeau, V. G.; Chen, G.; Deber, C. M. Proc. Natl. Acad. Sci. USA 2009, 106, 1760-1765. https://doi.org/10.1073/pnas.0813167106
- Lee, C. R.; Park, Y. H.; Kim, M.; Kim, Y. R.; Park, S.; Peterkofsky, A.; Seok, Y. J. Mol. Microbiol. 2013, in press.
- Reynolds, J. A.; Tanford, C. Proc. Natl. Acad. Sci. USA 1970, 66, 1002-1007. https://doi.org/10.1073/pnas.66.3.1002
- Dutta, A.; Kim, T. Y.; Moeller, M.; Wu, J.; Alexiev, U.; Klein-Seetharaman, J. Biochemistry 2010, 49, 6329-6340. https://doi.org/10.1021/bi100339x
- Zhou, X. M.; Liu, Y.; Payne, G.; Lutz, R. J.; Chittenden, T. J. Biol. Chem. 2000, 275, 25046-25051. https://doi.org/10.1074/jbc.M002526200
Cited by
- Conserved active site cysteine residue of archaeal THI4 homolog is essential for thiamine biosynthesis in Haloferax volcanii vol.14, pp.1, 2014, https://doi.org/10.1186/s12866-014-0260-0
- A model for activation of the hexadecameric phosphorylase kinase complex deduced from zero-length oxidative crosslinking vol.24, pp.12, 2015, https://doi.org/10.1002/pro.2804
- Stereoisomer-Specific Anticancer Activities of Ginsenoside Rg3 and Rh2 in HepG2 Cells: Disparity in Cytotoxicity and Autophagy-Inducing Effects Due to 20(S)-Epimers vol.38, pp.1, 2015, https://doi.org/10.1248/bpb.b14-00603
- Lymphocyte phosphatase-associated phosphoprotein proteoforms analyzed using monoclonal antibodies vol.4, pp.10, 2015, https://doi.org/10.1038/cti.2015.22
- Fine-tuning of amino sugar homeostasis by EIIANtr in Salmonella Typhimurium vol.6, pp.1, 2016, https://doi.org/10.1038/srep33055
- The tumor promoter-activated protein kinase Cs are a system for regulating filopodia vol.74, pp.8, 2017, https://doi.org/10.1002/cm.21373
- Determination of protein phosphorylation by polyacrylamide gel electrophoresis vol.57, pp.2, 2019, https://doi.org/10.1007/s12275-019-9021-y
- Deciphering the Interplay among Multisite Phosphorylation, Interaction Dynamics, and Conformational Transitions in a Tripartite Protein System vol.2, pp.7, 2016, https://doi.org/10.1021/acscentsci.6b00053
- Polar landmark protein HubP recruits flagella assembly protein FapA under glucose limitation in Vibrio vulnificus vol.112, pp.1, 2013, https://doi.org/10.1111/mmi.14268
- A Highly Versatile Expression System for the Production of Multiply Phosphorylated Proteins vol.14, pp.7, 2013, https://doi.org/10.1021/acschembio.9b00307
- Phosphorylation and Dephosphorylation of Tau Protein by the Catalytic Subunit of PKA, as Probed by Electrophoretic Mobility Retard vol.79, pp.3, 2013, https://doi.org/10.3233/jad-201077
- Pleiotropic Roles of NOTCH1 Signaling in the Loss of Maturational Arrest of Human Osteoarthritic Chondrocytes vol.22, pp.21, 2013, https://doi.org/10.3390/ijms222112012
- Testicular inducing steroidogenic cells trigger sex change in groupers vol.11, pp.1, 2013, https://doi.org/10.1038/s41598-021-90691-9