DOI QR코드

DOI QR Code

Preparation of Dihydroxy Naphthalene/TiO2 Complex via Surface Modification and Their Photocatalytic H2 Production Performances Under Visible Light

  • Hu, Shaozheng (Institute of Eco-environmental Sciences, Liaoning Shihua University) ;
  • Li, Fayun (Institute of Eco-environmental Sciences, Liaoning Shihua University) ;
  • Fan, Zhiping (Institute of Eco-environmental Sciences, Liaoning Shihua University)
  • Received : 2013.03.18
  • Accepted : 2013.04.12
  • Published : 2013.07.20

Abstract

The dihydroxy naphthalene/$TiO_2$ complexes with different substitution patterns were prepared by surface modification. X-ray diffraction, UV-Vis spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy were used to characterize the prepared composite materials. The results indicated that the surface modification did not influence the crystallization of $TiO_2$. The visible-light absorbances of prepared dihydroxy naphthalene/$TiO_2$ complexes could be assigned to the ligand-to-metal charge transfer. The obtained catalyst exhibited outstanding photocatalytic activity and stability under visible light. A linear relationship existed between the percentages of hydroxynaphthalenes coordinated on $TiO_2$ surface and $H_2$ production ability. The substitution pattern of dihydroxy naphthalene and $CH_3OH$ content could also influence the photocatalytic performance remarkably. The photocatalytic $H_2$ production ability was further improved after loading with ultra low concentration of Pt, 0.02 wt %. The possible mechanism was proposed.

Keywords

References

  1. Fujishima, A.; Honda, K. Nature 1972, 238, 37. https://doi.org/10.1038/238037a0
  2. Zong, X.; Yan, H. J.; Wu, G. P.; Ma, G. J.; Wen, F. Y.; Wang, L.; Li, C. J. Am. Chem. Soc. 2008, 130, 7176. https://doi.org/10.1021/ja8007825
  3. Kudo, A.; Sekizawa, M. Chem. Commun. 2000, 1371.
  4. Kudo, A.; Kato, H. Chem. Phys. Lett. 2000, 331, 373. https://doi.org/10.1016/S0009-2614(00)01220-3
  5. Maeda, K.; Domen, K. J . Phys. Chem. C 2007, 111, 7851. https://doi.org/10.1021/jp070911w
  6. Dholam, R.; Patel, N.; Adami, M.; Miotello, A. Int. J. Hydrogen Energ. 2009, 34, 5337. https://doi.org/10.1016/j.ijhydene.2009.05.011
  7. Sun, T.; Fan, J.; Liu, E. Z.; Liu, L. S.; Wang, Y.; Dai, H. Z.; Yang, Y. H.; Hou, W. Q.; Hu, X. Y.; Jiang, Z. Y. Powder Technol. 2012, 228, 210. https://doi.org/10.1016/j.powtec.2012.05.018
  8. Wu, G. S.; Tian, M.; Chen, A. C. J. Photochem. Photobiol. A: Chem. 2012, 233, 65. https://doi.org/10.1016/j.jphotochem.2012.02.021
  9. Cheng, P.; Yang, Z.; Wang, H.; Cheng, W.; Chen, M. X.; Shangguan, W. F.; Ding, G. F. Int. J. Hydrogen Energ. 2012, 37, 2224. https://doi.org/10.1016/j.ijhydene.2011.11.004
  10. Fan, W. Q.; Lai, Q. H.; Zhang, Q. H.; Wang, Y. J. Phys. Chem. C 2011, 115, 10694. https://doi.org/10.1021/jp2008804
  11. Li, K.; Chai, B.; Peng, T. Y.; Mao, J.; Zan, L. ACS Catal. 2013, 3, 170. https://doi.org/10.1021/cs300724r
  12. Linsebigler, A. L.; Lu, G.; Yates, J. T., Jr. Chem Rev. 1995, 95, 735. https://doi.org/10.1021/cr00035a013
  13. Meyer, S.; Saborowski, S.; Schafer, B. ChemPhysChem 2006, 7, 572. https://doi.org/10.1002/cphc.200500487
  14. Vasileia, M. D.; Paraskevi, P.; Dimitris, I. K. Chem. Eng. J. 2011, 170, 433. https://doi.org/10.1016/j.cej.2010.11.093
  15. Rosseler, O.; Shankar, M. V.; Du, M. K.; Schmidlin, L.; Keller, N.; Keller, V. J. Catal. 2010, 269, 179. https://doi.org/10.1016/j.jcat.2009.11.006
  16. Onsuratoom, S.; Chavadej, S.; Sreethawong, T. Int. J. Hydrogen Energ. 2011, 36, 5246. https://doi.org/10.1016/j.ijhydene.2011.01.176
  17. Wu, X. M.; Song, Q. Q.; Jia, L. S.; Li, Q. B.; Yang, C.; Lin, L. Q. Int. J. Hydrogen Energ. 2012, 37, 109. https://doi.org/10.1016/j.ijhydene.2011.09.064
  18. Kim, S.; Choi, W. J. Phys. Chem. B 2005, 109, 5143. https://doi.org/10.1021/jp045806q
  19. Kim, G.; Choi, W. Appl. Catal. B: Environ. 2010, 100, 77. https://doi.org/10.1016/j.apcatb.2010.07.014
  20. Park, H.; Kim, W.; Jeong, H.; Lee, J.; Kim, H.; Choi, W. Sol. Energ. Mat. Sol. C. 2011, 95, 184. https://doi.org/10.1016/j.solmat.2010.02.017
  21. Chou, C.; Yang, R.; Yeh, C.; Lin, Y. Powder Technol. 2009, 194, 95. https://doi.org/10.1016/j.powtec.2009.03.039
  22. Tachikawa, T.; Yoshida, A.; Tojo, S.; Sugimoto, A.; Fujitsuka, M.; Majima, T. Chem. Eur. J. 2004, 10, 5345. https://doi.org/10.1002/chem.200400516
  23. Ikeda, S.; Abe, C.; Torimoto, T.; Ohtani, B. J. Photochem. Photobiol. A: Chem. 2013, 160, 61.
  24. Lin, J.; Lin, Y.; Liu, P.; Meziani, M. J.; Allard, L. F.; Sun, Y. P. J. Am. Chem. Soc. 2002, 124, 11514. https://doi.org/10.1021/ja0206341
  25. Jankovi , I. A.; Saponji , Z. V.; omor, M. I.; Nedeljkovi , J. M. J. Phys. Chem. C 2009, 113, 12645. https://doi.org/10.1021/jp9013338
  26. Eder, D.; Windle, A. H. Adv. Mater. 2008, 20, 1787. https://doi.org/10.1002/adma.200702835
  27. Shkrob, I. A.; Sauer, M. C.; Gosztola, D. J. Phys. Chem. B 2004, 108, 12512. https://doi.org/10.1021/jp0477351
  28. Yu, J. G.; Zhao, X. J.; Zhao, Q. N. Mater. Chem. Phys. 2001, 69, 25. https://doi.org/10.1016/S0254-0584(00)00291-1
  29. Ou, Y.; Lin, J. D.; Zou, H. M.; Liao, D. W. J. Mol. Catal. A 2005, 241, 59. https://doi.org/10.1016/j.molcata.2005.06.054
  30. Biniak, S.; Szymanski, G.; Siedlewski, J.; Swiatkowski, A. Carbon 1997, 35, 1799. https://doi.org/10.1016/S0008-6223(97)00096-1
  31. Li, X. Y.; Wang, D. S.; Cheng, G. X.; Luo, Q. Z.; An, J.; Wang, Y. H. Appl. Catal. B: Environ. 2008, 81, 267. https://doi.org/10.1016/j.apcatb.2007.12.022
  32. Su, B. T.; Liu, X. H.; Peng, X. X.; Xiao, T.; Su, Z. X. Mater. Sci. Eng. A 2003, 349, 59. https://doi.org/10.1016/S0921-5093(02)00544-0
  33. Liu, Y.; Dadap, J. I.; Zimdars, D.; Eisenthal, K. B. J. Phys. Chem. B 1999, 103, 2480. https://doi.org/10.1021/jp984288e
  34. Regazzoni, A. E.; Mandelbaum, P.; Matsuyoshi, M.; Schiller, S.; Bilmes, S. A.; Blesa, M. A. Langmuir 1998, 14, 868. https://doi.org/10.1021/la970665n
  35. Ikeda, S.; Abe, C.; Torimoto, T.; Ohtani, B. J. Photochem. Photobiol. A 2003, 160, 61. https://doi.org/10.1016/S1010-6030(03)00222-3
  36. Khan, M. A.; Akhtar, M. S.; Woo, S. I.; Yang, O. Catal. Commun. 2008, 10, 1. https://doi.org/10.1016/j.catcom.2008.01.018
  37. Liu, Y.; Dadap, J. I.; Zimdars, D.; Eisenthal, K. B. J. Phys. Chem. B 1999, 103, 2480. https://doi.org/10.1021/jp984288e
  38. Ikeda, S.; Abe, C.; Torimoto, T.; Ohtani, B. Electrochem. 2002, 70, 442.
  39. Daskalaki, V. M.; Panagiotopoulou, P.; Kondarides, D. I. Chem. Eng. J. 2011, 170, 433. https://doi.org/10.1016/j.cej.2010.11.093
  40. Iwase, A.; Kato, H.; Kudo, A. Catal. Lett. 2006, 108(1-2), 7. https://doi.org/10.1007/s10562-006-0030-1
  41. Zalas, M.; Laniecki, M. Sol. Energ. Mat. Sol. C 2005, 89, 287. https://doi.org/10.1016/j.solmat.2005.02.014

Cited by

  1. Synthesis and ultraviolet-visible spectroscopic and electrochemical analyses of dyes derived from 2-aminobenzothiazole, and study of their adsorption on titanium dioxide vol.130, pp.4, 2014, https://doi.org/10.1111/cote.12098
  2. The Influence of Ca2+ and pH on the Interaction between PAHs and Molybdenite Edges vol.7, pp.6, 2017, https://doi.org/10.3390/min7060104
  3. Synthesis and Electrochemical Properties of TiNb2O7 and Ti2Nb10O29 Anodes under Various Annealing Atmospheres vol.11, pp.6, 2013, https://doi.org/10.3390/met11060983