References
- Fujishima, A.; Honda, K. Nature 1972, 238, 37. https://doi.org/10.1038/238037a0
- Zong, X.; Yan, H. J.; Wu, G. P.; Ma, G. J.; Wen, F. Y.; Wang, L.; Li, C. J. Am. Chem. Soc. 2008, 130, 7176. https://doi.org/10.1021/ja8007825
- Kudo, A.; Sekizawa, M. Chem. Commun. 2000, 1371.
- Kudo, A.; Kato, H. Chem. Phys. Lett. 2000, 331, 373. https://doi.org/10.1016/S0009-2614(00)01220-3
- Maeda, K.; Domen, K. J . Phys. Chem. C 2007, 111, 7851. https://doi.org/10.1021/jp070911w
- Dholam, R.; Patel, N.; Adami, M.; Miotello, A. Int. J. Hydrogen Energ. 2009, 34, 5337. https://doi.org/10.1016/j.ijhydene.2009.05.011
- Sun, T.; Fan, J.; Liu, E. Z.; Liu, L. S.; Wang, Y.; Dai, H. Z.; Yang, Y. H.; Hou, W. Q.; Hu, X. Y.; Jiang, Z. Y. Powder Technol. 2012, 228, 210. https://doi.org/10.1016/j.powtec.2012.05.018
- Wu, G. S.; Tian, M.; Chen, A. C. J. Photochem. Photobiol. A: Chem. 2012, 233, 65. https://doi.org/10.1016/j.jphotochem.2012.02.021
- Cheng, P.; Yang, Z.; Wang, H.; Cheng, W.; Chen, M. X.; Shangguan, W. F.; Ding, G. F. Int. J. Hydrogen Energ. 2012, 37, 2224. https://doi.org/10.1016/j.ijhydene.2011.11.004
- Fan, W. Q.; Lai, Q. H.; Zhang, Q. H.; Wang, Y. J. Phys. Chem. C 2011, 115, 10694. https://doi.org/10.1021/jp2008804
- Li, K.; Chai, B.; Peng, T. Y.; Mao, J.; Zan, L. ACS Catal. 2013, 3, 170. https://doi.org/10.1021/cs300724r
- Linsebigler, A. L.; Lu, G.; Yates, J. T., Jr. Chem Rev. 1995, 95, 735. https://doi.org/10.1021/cr00035a013
- Meyer, S.; Saborowski, S.; Schafer, B. ChemPhysChem 2006, 7, 572. https://doi.org/10.1002/cphc.200500487
- Vasileia, M. D.; Paraskevi, P.; Dimitris, I. K. Chem. Eng. J. 2011, 170, 433. https://doi.org/10.1016/j.cej.2010.11.093
- Rosseler, O.; Shankar, M. V.; Du, M. K.; Schmidlin, L.; Keller, N.; Keller, V. J. Catal. 2010, 269, 179. https://doi.org/10.1016/j.jcat.2009.11.006
- Onsuratoom, S.; Chavadej, S.; Sreethawong, T. Int. J. Hydrogen Energ. 2011, 36, 5246. https://doi.org/10.1016/j.ijhydene.2011.01.176
- Wu, X. M.; Song, Q. Q.; Jia, L. S.; Li, Q. B.; Yang, C.; Lin, L. Q. Int. J. Hydrogen Energ. 2012, 37, 109. https://doi.org/10.1016/j.ijhydene.2011.09.064
- Kim, S.; Choi, W. J. Phys. Chem. B 2005, 109, 5143. https://doi.org/10.1021/jp045806q
- Kim, G.; Choi, W. Appl. Catal. B: Environ. 2010, 100, 77. https://doi.org/10.1016/j.apcatb.2010.07.014
- Park, H.; Kim, W.; Jeong, H.; Lee, J.; Kim, H.; Choi, W. Sol. Energ. Mat. Sol. C. 2011, 95, 184. https://doi.org/10.1016/j.solmat.2010.02.017
- Chou, C.; Yang, R.; Yeh, C.; Lin, Y. Powder Technol. 2009, 194, 95. https://doi.org/10.1016/j.powtec.2009.03.039
- Tachikawa, T.; Yoshida, A.; Tojo, S.; Sugimoto, A.; Fujitsuka, M.; Majima, T. Chem. Eur. J. 2004, 10, 5345. https://doi.org/10.1002/chem.200400516
- Ikeda, S.; Abe, C.; Torimoto, T.; Ohtani, B. J. Photochem. Photobiol. A: Chem. 2013, 160, 61.
- Lin, J.; Lin, Y.; Liu, P.; Meziani, M. J.; Allard, L. F.; Sun, Y. P. J. Am. Chem. Soc. 2002, 124, 11514. https://doi.org/10.1021/ja0206341
- Jankovi , I. A.; Saponji , Z. V.; omor, M. I.; Nedeljkovi , J. M. J. Phys. Chem. C 2009, 113, 12645. https://doi.org/10.1021/jp9013338
- Eder, D.; Windle, A. H. Adv. Mater. 2008, 20, 1787. https://doi.org/10.1002/adma.200702835
- Shkrob, I. A.; Sauer, M. C.; Gosztola, D. J. Phys. Chem. B 2004, 108, 12512. https://doi.org/10.1021/jp0477351
- Yu, J. G.; Zhao, X. J.; Zhao, Q. N. Mater. Chem. Phys. 2001, 69, 25. https://doi.org/10.1016/S0254-0584(00)00291-1
- Ou, Y.; Lin, J. D.; Zou, H. M.; Liao, D. W. J. Mol. Catal. A 2005, 241, 59. https://doi.org/10.1016/j.molcata.2005.06.054
- Biniak, S.; Szymanski, G.; Siedlewski, J.; Swiatkowski, A. Carbon 1997, 35, 1799. https://doi.org/10.1016/S0008-6223(97)00096-1
- Li, X. Y.; Wang, D. S.; Cheng, G. X.; Luo, Q. Z.; An, J.; Wang, Y. H. Appl. Catal. B: Environ. 2008, 81, 267. https://doi.org/10.1016/j.apcatb.2007.12.022
- Su, B. T.; Liu, X. H.; Peng, X. X.; Xiao, T.; Su, Z. X. Mater. Sci. Eng. A 2003, 349, 59. https://doi.org/10.1016/S0921-5093(02)00544-0
- Liu, Y.; Dadap, J. I.; Zimdars, D.; Eisenthal, K. B. J. Phys. Chem. B 1999, 103, 2480. https://doi.org/10.1021/jp984288e
- Regazzoni, A. E.; Mandelbaum, P.; Matsuyoshi, M.; Schiller, S.; Bilmes, S. A.; Blesa, M. A. Langmuir 1998, 14, 868. https://doi.org/10.1021/la970665n
- Ikeda, S.; Abe, C.; Torimoto, T.; Ohtani, B. J. Photochem. Photobiol. A 2003, 160, 61. https://doi.org/10.1016/S1010-6030(03)00222-3
- Khan, M. A.; Akhtar, M. S.; Woo, S. I.; Yang, O. Catal. Commun. 2008, 10, 1. https://doi.org/10.1016/j.catcom.2008.01.018
- Liu, Y.; Dadap, J. I.; Zimdars, D.; Eisenthal, K. B. J. Phys. Chem. B 1999, 103, 2480. https://doi.org/10.1021/jp984288e
- Ikeda, S.; Abe, C.; Torimoto, T.; Ohtani, B. Electrochem. 2002, 70, 442.
- Daskalaki, V. M.; Panagiotopoulou, P.; Kondarides, D. I. Chem. Eng. J. 2011, 170, 433. https://doi.org/10.1016/j.cej.2010.11.093
- Iwase, A.; Kato, H.; Kudo, A. Catal. Lett. 2006, 108(1-2), 7. https://doi.org/10.1007/s10562-006-0030-1
- Zalas, M.; Laniecki, M. Sol. Energ. Mat. Sol. C 2005, 89, 287. https://doi.org/10.1016/j.solmat.2005.02.014
Cited by
- Synthesis and ultraviolet-visible spectroscopic and electrochemical analyses of dyes derived from 2-aminobenzothiazole, and study of their adsorption on titanium dioxide vol.130, pp.4, 2014, https://doi.org/10.1111/cote.12098
- The Influence of Ca2+ and pH on the Interaction between PAHs and Molybdenite Edges vol.7, pp.6, 2017, https://doi.org/10.3390/min7060104
- Synthesis and Electrochemical Properties of TiNb2O7 and Ti2Nb10O29 Anodes under Various Annealing Atmospheres vol.11, pp.6, 2013, https://doi.org/10.3390/met11060983