References
- Machida, M.; Miyazaki, K.; Matsushima, S.; Arai, M. J. Mater. Chem. 2003, 13, 1433. https://doi.org/10.1039/b301938c
- Kang, J. H.; Paek, S. M.; Choy, J. H. Bull. Korean Chem. Soc. 2010, 31, 3675. https://doi.org/10.5012/bkcs.2010.31.12.3675
- Sergienko, I. A.; Sen, C.; Dagotto, E. Phys. Rev. Lett. 2006, 97, 227204. https://doi.org/10.1103/PhysRevLett.97.227204
- Byeon, S. H. Bull. Korean Chem. Soc. 1995, 16, 1084.
- von Helmolt, R.; Wecker, J.; Holzapfel, B.; Schultz, L.; Samwer, K. Phys. Rev. Lett. 1993, 71, 2331. https://doi.org/10.1103/PhysRevLett.71.2331
- Choy, J. H.; Kim, J. Y.; Kim, S. J.; Sohn, J. S.; Han, O. H. Chem. Mater. 2001, 13, 906. https://doi.org/10.1021/cm000673g
- Oh, J. M.; Park, D. H.; Choi, S. J.; Choy, J. H. Recent Pat. Nanotech. 2012, 6, 200.
- Paek, S. M.; Oh, J. M.; Choy, J. H. Chem. Asian. J. 2011, 6, 324. https://doi.org/10.1002/asia.201000578
- Paek, S. M.; Jung, H.; Lee, Y. J.; Park, M.; Hwang, S. J.; Choy, J. H. Chem. Mater. 2006, 18, 1134. https://doi.org/10.1021/cm052201d
- Erdem, M.; Say, R.; Ersoz, A.; Denizli, A.; Turk, H. Appl. Clay, Sci. 2010, 47, 223. https://doi.org/10.1016/j.clay.2009.10.011
- Kang, J. H.; Paek, S. M.; Hwang, S. J.; Choy, J. H. J. Mater. Chem. 2010, 20, 2033. https://doi.org/10.1039/b918363a
- Schaak, R. E.; Mallouk, T. E. Chem. Mater. 2000, 12, 3427. https://doi.org/10.1021/cm000495r
- Toda, K.; Sato, M. J. Mater. Chem. 1996, 6, 1067. https://doi.org/10.1039/jm9960601067
- Wang, Q.; Gao, Q.; Shi, J. Langmuir 2004, 20, 10231. https://doi.org/10.1021/la048602+
- Sasaki, T.; Watanabe, M. J. Am. Chem. Soc. 1998, 120, 4682. https://doi.org/10.1021/ja974262l
- Machida, M.; Yabunaka, J.; Kijima, T.; Matsushima, S.; Arai, M. Int. J. Inorg. Mater. 2001, 3, 545. https://doi.org/10.1016/S1466-6049(01)00071-X
- Lee, E.; Kim, S.-J.; Paik, Y.; Kim, Y.-I. Mater. Res. Bull. 2013, 48, 813.
- Ozawa, T. C.; Fukuda, K.; Akatsuka, K.; Ebina, Y.; Kurashima, K.; Sasaki, T. J. Phys. Chem. C 2009, 113, 8735. https://doi.org/10.1021/jp900748e
Cited by
- Microwave-assisted routes for rapid and efficient modification of layered perovskites pp.1477-9234, 2018, https://doi.org/10.1039/C7DT03865H
- Characteristics of SrCo1-xFexO3-δ Perovskite Powders with Improved O2/CO2 Production Performance for Oxyfuel Combustion vol.35, pp.6, 2013, https://doi.org/10.5012/bkcs.2014.35.6.1613
- Hierarchical nanostructure of RuO2 hollow spheres with enhanced lithium ion storage and cyclic performance vol.711, pp.None, 2013, https://doi.org/10.1016/j.jallcom.2017.04.047
- Rapid Exfoliation and Surface Tailoring of Perovskite Nanosheets via Microwave‐Assisted Reactions vol.3, pp.8, 2013, https://doi.org/10.1002/cnma.201700124
- Crystal structures of new layered perovskite-type oxyfluorides, CsANb2O6F (A = Sr and Ca) and comparison with pyrochlore-type CsNb2O5F vol.267, pp.None, 2013, https://doi.org/10.1016/j.jssc.2018.08.020
- Synthesis and X-ray absorption spectroscopic analysis of exfoliated perovskite oxynitride nanosheets obtained from LiLaTa2O6.15N0.57 precursor vol.269, pp.None, 2019, https://doi.org/10.1016/j.jssc.2018.09.039
- Synthesis and thermal stability of new inorganic-organic perovskite-like hybrids based on layered titanates HLnTiO4 (Ln = La, Nd) vol.46, pp.4, 2013, https://doi.org/10.1016/j.ceramint.2019.10.249
- NMR Study of Intercalates and Grafted Organic Derivatives of H 2 La 2 Ti 3 O 10 vol.25, pp.22, 2013, https://doi.org/10.3390/molecules25225229
- Synthesis, structure, and properties of new Dion-Jacobson compounds A’LnNaNb3O10 (A’ = Cs, Rb, H; Ln = Nd, Pr) vol.156, pp.None, 2013, https://doi.org/10.1016/j.jpcs.2021.110184
- A Review on the Synthesis and Modification of Functional Inorganic‐Organic‐Hybrid Materials via Microwave‐Assisted Method vol.6, pp.34, 2013, https://doi.org/10.1002/slct.202102030
- Physical-Chemical Exfoliation of n-Alkylamine Derivatives of Layered Perovskite-like Oxide H2K0.5Bi2.5Ti4O13 into Nanosheets vol.11, pp.10, 2021, https://doi.org/10.3390/nano11102708