DOI QR코드

DOI QR Code

Exfoliation of Dion-Jacobson Layered Perovskite into Macromolecular Nanoplatelet

  • Lee, Won-Jae (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University) ;
  • Yeo, Hyun Jung (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University) ;
  • Kim, Do-Yun (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University) ;
  • Paek, Seung-Min (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University) ;
  • Kim, Young-Il (Department of Chemistry, Yeungnam University)
  • Received : 2013.03.19
  • Accepted : 2013.04.10
  • Published : 2013.07.20

Abstract

A layered perovskite of Dion-Jacobson phase, $RbLaTa_2O_7$, was successfully exfoliated into colloidal suspension via successive ion-exchange and intercalation reaction. The pristine perovskite $RbLaTa_2O_7$ was synthesized by conventional solid-state reaction, and then, it was ion-exchanged with hydrochloric acid to obtain a protonic form of perovskite. The resulting proton-exchanged perovskite was reacted with ethylamine to increase interlayer spaces for further intercalation reaction. Finally, the ethylamine-intercalated form was exfoliated into nanosheets via an intercalation of bulky organic cations (tetrabutylammonium). According to X-ray diffraction (XRD) analysis, the TBA-intercalated form showed remarkably increased interlayer spacing (${\Delta}d$ = 1.67 nm) in comparison with that of the pristine material. Transmission electron microscopic image of exfoliated perovskite clearly revealed that the present exfoliated perovskite were composed of very thin layers. This exfoliated perovskite nanosheets could be applicable as building blocks for fabricating functional nanocomposites.

Keywords

References

  1. Machida, M.; Miyazaki, K.; Matsushima, S.; Arai, M. J. Mater. Chem. 2003, 13, 1433. https://doi.org/10.1039/b301938c
  2. Kang, J. H.; Paek, S. M.; Choy, J. H. Bull. Korean Chem. Soc. 2010, 31, 3675. https://doi.org/10.5012/bkcs.2010.31.12.3675
  3. Sergienko, I. A.; Sen, C.; Dagotto, E. Phys. Rev. Lett. 2006, 97, 227204. https://doi.org/10.1103/PhysRevLett.97.227204
  4. Byeon, S. H. Bull. Korean Chem. Soc. 1995, 16, 1084.
  5. von Helmolt, R.; Wecker, J.; Holzapfel, B.; Schultz, L.; Samwer, K. Phys. Rev. Lett. 1993, 71, 2331. https://doi.org/10.1103/PhysRevLett.71.2331
  6. Choy, J. H.; Kim, J. Y.; Kim, S. J.; Sohn, J. S.; Han, O. H. Chem. Mater. 2001, 13, 906. https://doi.org/10.1021/cm000673g
  7. Oh, J. M.; Park, D. H.; Choi, S. J.; Choy, J. H. Recent Pat. Nanotech. 2012, 6, 200.
  8. Paek, S. M.; Oh, J. M.; Choy, J. H. Chem. Asian. J. 2011, 6, 324. https://doi.org/10.1002/asia.201000578
  9. Paek, S. M.; Jung, H.; Lee, Y. J.; Park, M.; Hwang, S. J.; Choy, J. H. Chem. Mater. 2006, 18, 1134. https://doi.org/10.1021/cm052201d
  10. Erdem, M.; Say, R.; Ersoz, A.; Denizli, A.; Turk, H. Appl. Clay, Sci. 2010, 47, 223. https://doi.org/10.1016/j.clay.2009.10.011
  11. Kang, J. H.; Paek, S. M.; Hwang, S. J.; Choy, J. H. J. Mater. Chem. 2010, 20, 2033. https://doi.org/10.1039/b918363a
  12. Schaak, R. E.; Mallouk, T. E. Chem. Mater. 2000, 12, 3427. https://doi.org/10.1021/cm000495r
  13. Toda, K.; Sato, M. J. Mater. Chem. 1996, 6, 1067. https://doi.org/10.1039/jm9960601067
  14. Wang, Q.; Gao, Q.; Shi, J. Langmuir 2004, 20, 10231. https://doi.org/10.1021/la048602+
  15. Sasaki, T.; Watanabe, M. J. Am. Chem. Soc. 1998, 120, 4682. https://doi.org/10.1021/ja974262l
  16. Machida, M.; Yabunaka, J.; Kijima, T.; Matsushima, S.; Arai, M. Int. J. Inorg. Mater. 2001, 3, 545. https://doi.org/10.1016/S1466-6049(01)00071-X
  17. Lee, E.; Kim, S.-J.; Paik, Y.; Kim, Y.-I. Mater. Res. Bull. 2013, 48, 813.
  18. Ozawa, T. C.; Fukuda, K.; Akatsuka, K.; Ebina, Y.; Kurashima, K.; Sasaki, T. J. Phys. Chem. C 2009, 113, 8735. https://doi.org/10.1021/jp900748e

Cited by

  1. Microwave-assisted routes for rapid and efficient modification of layered perovskites pp.1477-9234, 2018, https://doi.org/10.1039/C7DT03865H
  2. Characteristics of SrCo1-xFexO3-δ Perovskite Powders with Improved O2/CO2 Production Performance for Oxyfuel Combustion vol.35, pp.6, 2013, https://doi.org/10.5012/bkcs.2014.35.6.1613
  3. Hierarchical nanostructure of RuO2 hollow spheres with enhanced lithium ion storage and cyclic performance vol.711, pp.None, 2013, https://doi.org/10.1016/j.jallcom.2017.04.047
  4. Rapid Exfoliation and Surface Tailoring of Perovskite Nanosheets via Microwave‐Assisted Reactions vol.3, pp.8, 2013, https://doi.org/10.1002/cnma.201700124
  5. Crystal structures of new layered perovskite-type oxyfluorides, CsANb2O6F (A = Sr and Ca) and comparison with pyrochlore-type CsNb2O5F vol.267, pp.None, 2013, https://doi.org/10.1016/j.jssc.2018.08.020
  6. Synthesis and X-ray absorption spectroscopic analysis of exfoliated perovskite oxynitride nanosheets obtained from LiLaTa2O6.15N0.57 precursor vol.269, pp.None, 2019, https://doi.org/10.1016/j.jssc.2018.09.039
  7. Synthesis and thermal stability of new inorganic-organic perovskite-like hybrids based on layered titanates HLnTiO4 (Ln = La, Nd) vol.46, pp.4, 2013, https://doi.org/10.1016/j.ceramint.2019.10.249
  8. NMR Study of Intercalates and Grafted Organic Derivatives of H 2 La 2 Ti 3 O 10 vol.25, pp.22, 2013, https://doi.org/10.3390/molecules25225229
  9. Synthesis, structure, and properties of new Dion-Jacobson compounds A’LnNaNb3O10 (A’ = Cs, Rb, H; Ln = Nd, Pr) vol.156, pp.None, 2013, https://doi.org/10.1016/j.jpcs.2021.110184
  10. A Review on the Synthesis and Modification of Functional Inorganic‐Organic‐Hybrid Materials via Microwave‐Assisted Method vol.6, pp.34, 2013, https://doi.org/10.1002/slct.202102030
  11. Physical-Chemical Exfoliation of n-Alkylamine Derivatives of Layered Perovskite-like Oxide H2K0.5Bi2.5Ti4O13 into Nanosheets vol.11, pp.10, 2021, https://doi.org/10.3390/nano11102708