DOI QR코드

DOI QR Code

Leaving-Group Substituent Controls Reactivity and Reaction Mechanism in Aminolysis of Phenyl Y-Substituted-Phenyl Carbonates

  • Kang, Ji-Sun (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Song, Yoon-Ju (Department of Chemistry, Duksung Women's University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2013.04.01
  • Accepted : 2013.04.09
  • Published : 2013.07.20

Abstract

A kinetic study is reported for the nucleophilic substitution reactions of phenyl Y-substituted-phenyl carbonates (5a-5k) with piperidine in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The plots of $k_{obsd}$ vs. [piperidine] for the reactions of substrates possessing a strong electron-withdrawing group (EWG) in the leaving group (i.e., 5a-5i) are linear and pass through the origin. In contrast, the plots for the reactions of substrates bearing a weak EWG or no substituent (i.e., 5j or 5k) curve upward, indicating that the electronic nature of the substituent Y in the leaving group governs the reaction mechanism. Thus, it has been suggested that the reactions of 5a-5i proceed through a stepwise mechanism with a zwitterionic tetrahedral intermediate (i.e., $T^{\pm}$) while those of 5j and 5k proceed through a stepwise mechanism with two intermediates (i.e., $T^{\pm}$ and its deprotonated form $T^-$). The slope of the Br${\o}$nsted-type plot for the second-order rate constants (i.e., $k_N$ or $Kk_2$) changes from -0.41 to -1.89 as the leaving-group basicity increases, indicating that a change in the rate-determining step (RDS) occurs. The reactions of 5a-5k with piperidine result in larger $k_1$ values than the corresponding reactions with ethylamine.

Keywords

References

  1. Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Singapore, 1997; Chapter 7.
  2. Castro, E. A. Chem. Rev. 1999, 99, 3505-3524. https://doi.org/10.1021/cr990001d
  3. Jencks, W. P. Chem. Rev. 1985, 85, 511-527. https://doi.org/10.1021/cr00070a001
  4. Jencks, W. P. Chem. Soc. Rev. 1981, 10, 345-375. https://doi.org/10.1039/cs9811000345
  5. Jencks, W. P. Acc. Chem. Res. 1980, 13, 161-169. https://doi.org/10.1021/ar50150a001
  6. Castro, E. A.; Aliaga, M.; Campodonico, P. R.; Cepeda, M.; Contreras, R.; Santos, J. G. J. Org. Chem. 2009, 74, 9173-9179. https://doi.org/10.1021/jo902005y
  7. Castro, E. A.; Ramos, M.; Santos, J. G. J. Org. Chem. 2009, 74, 6374-6377. https://doi.org/10.1021/jo901137f
  8. Castro, E. A. Pure Appl. Chem. 2009, 81, 685-696. https://doi.org/10.1351/PAC-CON-08-08-11
  9. Castro, E. A.; Aliaga, M.; Santos, J. G. J. Org. Chem. 2005, 70, 2679-2685. https://doi.org/10.1021/jo047742l
  10. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005, 70, 8088-8092. https://doi.org/10.1021/jo051168b
  11. Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824-3829. https://doi.org/10.1021/ja00766a027
  12. Maude, A. B.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1997, 179-183.
  13. Maude, A. B.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1995, 691-696.
  14. Menger, F. M.; Brian, J.; Azov, V. A. Angew. Chem. Int. Ed. 2002, 41, 2581-2584. https://doi.org/10.1002/1521-3773(20020715)41:14<2581::AID-ANIE2581>3.0.CO;2-#
  15. Perreux, L.; Loupy, A.; Delmotte, M. Tetrahedron 2003, 59, 2185-2189. https://doi.org/10.1016/S0040-4020(03)00151-0
  16. Fife, T. H.; Chauffe, L. J. Org. Chem. 2000, 65, 3579-3586. https://doi.org/10.1021/jo9906835
  17. Linas, A.; Page, M. I. Org. Biomol. Chem. 2004, 2, 651-654. https://doi.org/10.1039/b313900j
  18. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 8995-8998. https://doi.org/10.1021/jo0264269
  19. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 3874-3877. https://doi.org/10.1021/jo025637a
  20. Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. New J. Chem. 2001, 25, 313-317. https://doi.org/10.1039/b006974o
  21. Oh, H. K.; Kim, S. K.; Cho, I. H.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 2000, 2306-2310.
  22. Lim, W. M.; Kim, W. K.; Jung, H. J.; Lee, I. Bull. Korean Chem. Soc. 1995, 16, 252-256.
  23. Um, I. H.; Bae, A. R. J. Org. Chem. 2012, 77, 5781-5787. https://doi.org/10.1021/jo300961y
  24. Um, I. H.; Bae, A. R. J. Org. Chem. 2011, 76, 7510-7515. https://doi.org/10.1021/jo201387h
  25. Um, I. H.; Im, L. R.; Kim, E. H.; Shin, J. H. Org. Biomol. Chem. 2010, 8, 3801-3806. https://doi.org/10.1039/c0ob00031k
  26. Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803. https://doi.org/10.1021/jo0606958
  27. Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942. https://doi.org/10.1021/jo049694a
  28. Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem. 2000, 65, 5659-5663. https://doi.org/10.1021/jo000482x
  29. Um, I. H.; Hwang, S. J.; Yoon, S. R.; Jeon, S. E.; Bae, S. K. J. Org. Chem. 2008, 73, 7671-7677. https://doi.org/10.1021/jo801539w
  30. Um, I. H.; Lee, S. E.; Kwon, H. J. J. Org. Chem. 2002, 67, 8999-9005. https://doi.org/10.1021/jo0259360
  31. Um, I. H.; Kim, E. H.; Lee, J. Y. J. Org. Chem. 2009, 74, 1212-1217. https://doi.org/10.1021/jo802446y
  32. Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2009, 74, 3073-3078. https://doi.org/10.1021/jo900219t
  33. Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823-3829. https://doi.org/10.1021/jo070171n
  34. Um, I. H.; Park, J. E.; Shin, Y. H. Org. Biomol. Chem. 2007, 5, 3539-3543. https://doi.org/10.1039/b712427a
  35. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720. https://doi.org/10.1021/jo061308x
  36. Um, I. H.; Hong, J. Y.; Seok, J. A. J. Org. Chem. 2005, 70, 1438-1444. https://doi.org/10.1021/jo048227q
  37. Um, I. H.; Chun, S. M.; Chae, O. M.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3166-3172. https://doi.org/10.1021/jo049812u
  38. Um, I. H.; Hong, J. Y.; Kim, J. J.; Chae, O. M.; Bae, S. K. J. Org. Chem. 2003, 68, 5180-5185. https://doi.org/10.1021/jo034190i
  39. Song, Y. J.; Kim, M. Y.; Um, I. H. Bull. Korean Chem. Soc. 2013, 34, 1722-1726. https://doi.org/10.5012/bkcs.2013.34.6.1722
  40. Heo, C. K. M.; Bunting, J. W. J. Chem. Soc., Perkin Trans. 2 1994, 2279-2290.
  41. Brotzel, F.; Chu, Y. C.; Mayr, H. J. Org. Chem. 2007, 72, 3679-3688. https://doi.org/10.1021/jo062586z
  42. Gregory, M. J.; Bruice, T. C. J. Am. Chem. Soc. 1967, 89, 2327-2330. https://doi.org/10.1021/ja00986a014
  43. Bernasconi, C. F.; Hibdon, S. A. J. Am. Chem. Soc. 1983, 105, 4343-4348. https://doi.org/10.1021/ja00351a037
  44. Bernasconi, C. F.; Perea-Loenzo, M.; Brown, S. D. J. Org. Chem. 2007, 72, 4416-4423. https://doi.org/10.1021/jo070372r
  45. Bunton, C. A.; Huang, S. K. J. Am. Chem. Soc. 1974, 96, 515-522. https://doi.org/10.1021/ja00809a029
  46. Yagil, G.; Anbar, M. J. Am. Chem. Soc. 1962, 84, 1797-1803. https://doi.org/10.1021/ja00869a005
  47. Cullum, N. R.; Rettura, D.; Whitmore, J. M. J.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1996, 1559-1564.
  48. Gresser, M.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963-6970. https://doi.org/10.1021/ja00463a032
  49. Gregory, M. J.; Bruice, T. C. J. Am. Chem. Soc. 1967, 89, 2327-2330. https://doi.org/10.1021/ja00986a014
  50. Bruice, T. C.; Donzel, A.; Huffman, R. W.; Butler, A. R. J. Am. Chem. Soc. 1967, 89, 2106-2121. https://doi.org/10.1021/ja00985a023
  51. Bernasconi, C. F.; Hibdon, S. A. J. Am. Chem. Soc. 1983, 105, 4343-4348. https://doi.org/10.1021/ja00351a037
  52. Bernasconi, C. F.; Perez-Lorenzo, M.; Brown, S. D. J. Org. Chem. 2007, 72, 4416-4423. https://doi.org/10.1021/jo070372r
  53. Spencer, T. A.; Kendall, M. C. R.; Reingold, I. D. J. Am. Chem. Soc. 1972, 94, 1250-1254. https://doi.org/10.1021/ja00759a035
  54. Um, I. H.; Yoon, S. R.; Park, H. R.; Han, H. J. Org. Biomol. Chem. 2008, 6, 1618-1624. https://doi.org/10.1039/b801422a
  55. Castro, E. A.; Angel, M.; Arellano, D.; Santos, J. G. J. Org. Chem. 2001, 66, 6571-6575. https://doi.org/10.1021/jo0101252

Cited by

  1. Kinetic Study on Nucleophilic Displacement Reactions of Phenyl Y-Substituted Phenyl Carbonates with 1,8-Diazabicyclo[5.4.0]undec-7-ene: Effects of Amine Nature on Reaction Mechanism vol.37, pp.1, 2015, https://doi.org/10.1002/bkcs.10627
  2. -Y-substituted-Phenyl Thionocarbonates with 1,8-Diazabicyclo[5.4.0]undec-7-ene in Acetonitrile vol.38, pp.10, 2017, https://doi.org/10.1002/bkcs.11242