DOI QR코드

DOI QR Code

Synthesis and Fluoride Binding Properties of Tris-pyridinium Borane

  • Lee, Kang Mun (Department of Chemistry, KAIST) ;
  • Kim, Yejin (Department of Chemistry and EHSRC, University of Ulsan) ;
  • Do, Youngkyu (Department of Chemistry, KAIST) ;
  • Lee, Junseong (Department of Chemistry, Chonnam National University) ;
  • Lee, Min Hyung (Department of Chemistry and EHSRC, University of Ulsan)
  • Received : 2013.03.23
  • Accepted : 2013.04.03
  • Published : 2013.07.20

Abstract

A novel multi-cationic borane, tri-N-methylpyridinium substituted triarylborane, $[BAr^N_3]I_3$ ($[2]I_3$) ($Ar^N=4-(4-C_5H_4N-Me)-2,6-Me_2-C_6H_2$) was prepared from the corresponding neutral tris-pyridyl borane, $BAr_3$ (2a) ($Ar=4-(4-C_5H_4N)-2,6-Me_2-C_6H_2$). The crystal structure of 2a determined by X-ray diffraction study reveals the presence of tri-coordinate boron center with peripheral pyridyl moieties. The fluoride ion affinity of the cationic borane, $[2]I_3$ was investigated by UV-vis absorption titrations and was compared with that of neutral 2a. While 2a binds fluoride with the binding constant of $1.9{\times}10^2\;M^{-1}$ in $THF/H_2O$ (9:1 v/v) mixture, $[2]I_3$ shows a very high binding constant ($K=1.0{\times}10^8\;M^{-1}$) that is greater by six orders of magnitude than that of 2a in the same medium. This result indicates that the fluorophilicity of triarylborane can be drastically enhanced by multiple pyridinium substitutions.

Keywords

References

  1. Aaseth, J.; Shimshi, M.; Gabrilove, J. L.; Birketvedt, G. S. J. Trace Elem. Exp. Med. 2004, 17, 83-92. https://doi.org/10.1002/jtra.10051
  2. Kleerekoper, M. Endocrinol. Metab. Clin. North Am. 1998, 27, 441-452. https://doi.org/10.1016/S0889-8529(05)70015-3
  3. Carton, R. J. Fluoride 2006, 39, 163-172.
  4. Wade, C. R.; Broomsgrove, A. E. J.; Aldridge, S.; Gabbai, F. P. Chem. Rev. 2010, 110, 3958-3984. https://doi.org/10.1021/cr900401a
  5. Jakle, F. Chem. Rev. 2010, 110, 3985-4022. https://doi.org/10.1021/cr100026f
  6. Hudnall, T. W.; Chiu, C.-W.; Gabbai, F. P. Acc. Chem. Res. 2009, 42, 388-397. https://doi.org/10.1021/ar8001816
  7. Hudson, Z. M.; Wang, S. Acc. Chem. Res. 2009, 42, 1584-1596. https://doi.org/10.1021/ar900072u
  8. Cametti, M.; Rissanen, K. Chem. Commun. 2009, 2809-2829.
  9. Song, K. C.; Kim, H.; Lee, K. M.; Lee, Y. S.; Do, Y.; Lee, M. H. Sens. Actuators B 2013, 176, 850-857. https://doi.org/10.1016/j.snb.2012.09.049
  10. Sung, W. Y.; Park, M. H.; Park, J. H.; Eo, M.; Yu, M.-S.; Do, Y.; Lee, M. H. Polymer 2012, 53, 1857-1863. https://doi.org/10.1016/j.polymer.2012.02.035
  11. Vadavi, R. S.; Kim, H.; Lee, K. M.; Kim, T.; Lee, J.; Lee, Y. S.; Lee, M. H. Organometallics 2012, 31, 31-34. https://doi.org/10.1021/om2008937
  12. Schmidt, H. C.; Reuter, L. G.; Hamacek, J.; Wenger, O. S. J. Org. Chem. 2011, 76, 9081-9085. https://doi.org/10.1021/jo2019152
  13. Park, M. H.; Kim, T.; Huh, J. O.; Do, Y.; Lee, M. H. Polymer 2011, 52, 1510-1514. https://doi.org/10.1016/j.polymer.2011.02.010
  14. He, X.; Yam, V. W.-W. Org. Lett. 2011, 13, 2172-2175. https://doi.org/10.1021/ol200277n
  15. Hudson, Z. M.; Liu, X.-Y.; Wang, S. Org. Lett. 2011, 13, 300-303. https://doi.org/10.1021/ol102749y
  16. Siewert, I.; Fitzpatrick, P.; Broomsgrove, A. E. J.; Kelly, M.; Vidovic, D.; Aldridge, S. Dalton Trans. 2011, 40, 10345-10350. https://doi.org/10.1039/c1dt10185d
  17. Fu, G.-L.; Pan, H.; Zhao, Y.-H.; Zhao, C.-H. Org. Biomol. Chem. 2011, 9, 8141-8146. https://doi.org/10.1039/c1ob05959a
  18. Broomsgrove, A. E. J.; Addy, D. A.; Di Paolo, A.; Morgan, I. R.; Bresner, C.; Chislett, V.; Fallis, I. A.; Thompson, A. L.; Vidovic, D.; Aldridge, S. Inorg. Chem. 2010, 49, 157-173. https://doi.org/10.1021/ic901673u
  19. Sun, Y.; Wang, S. Inorg. Chem. 2010, 49, 4394-4404. https://doi.org/10.1021/ic1004159
  20. You, Y.; Park, S. Y. Adv. Mater. 2008, 20, 3820-3826. https://doi.org/10.1002/adma.200702667
  21. Kawachi, A.; Tani, A.; Shimada, J.; Yamamoto, Y. J. Am. Chem. Soc. 2008, 130, 4222-4223. https://doi.org/10.1021/ja710615r
  22. Zhao, Q.; Li, F.; Liu, S.; Yu, M.; Liu, Z.; Yi, T.; Huang, C. Inorg. Chem. 2008, 47, 9256-9264. https://doi.org/10.1021/ic800500c
  23. Zhou, G.; Baumgarten, M.; Müllen, K. J. Am. Chem. Soc. 2008, 130, 12477-12484. https://doi.org/10.1021/ja803627x
  24. Huh, J. O.; Do, Y.; Lee, M. H. Organometallics 2008, 27, 1022-1025. https://doi.org/10.1021/om701237t
  25. Day, J. K.; Bresner, C.; Coombs, N. D.; Fallis, I. A.; Ooi, L.-L.; Aldridge, S. Inorg. Chem. 2008, 47, 793-804. https://doi.org/10.1021/ic701494p
  26. Broomsgrove, A. E. J.; Addy, D. A.; Bresner, C.; Fallis, I. A.; Thompson, A. L.; Aldridge, S. Chem. Eur. J. 2008, 14, 7525-7529. https://doi.org/10.1002/chem.200801381
  27. Sakuda, E.; Funahashi, A.; Kitamura, N. Inorg. Chem. 2006, 45, 10670-10677. https://doi.org/10.1021/ic061435b
  28. Parab, K.; Venkatasubbaiah, K.; Jakle, F. J. Am. Chem. Soc. 2006, 128, 12879-12885. https://doi.org/10.1021/ja063302v
  29. Melaimi, M.; Sole, S.; Chiu, C.-W.; Wang, H.; Gabbai, F. P. Inorg. Chem. 2006, 45, 8136-8143. https://doi.org/10.1021/ic060709s
  30. Hudnall, T. W.; Melaimi, M.; Gabbai, F. P. Org. Lett. 2006, 8, 2747-2749. https://doi.org/10.1021/ol060791v
  31. Liu, X. Y.; Bai, D. R.; Wang, S. Angew. Chem. Int. Ed. 2006, 45, 5475-5478. https://doi.org/10.1002/anie.200601286
  32. Melaimi, M.; Gabbai, F. P. J. Am. Chem. Soc. 2005, 127, 9680-9681. https://doi.org/10.1021/ja053058s
  33. Liu, Z. Q.; Shi, M.; Li, F. Y.; Fang, Q.; Chen, Z. H.; Yi, T.; Huang, C. H. Org. Lett. 2005, 7, 5481-5484. https://doi.org/10.1021/ol052323b
  34. Sundararaman, A.; Victor, M.; Varughese, R.; Jakle, F. J. Am. Chem. Soc. 2005, 127, 13748-13749. https://doi.org/10.1021/ja0537880
  35. Kubo, Y.; Yamamoto, M.; Ikeda, M.; Takeuchi, M.; Shinkai, S.; Yamaguchi, S.; Tamao, K. Angew. Chem. Int. Ed. 2003, 42, 2036-2040. https://doi.org/10.1002/anie.200250788
  36. Yamaguchi, S.; Akiyama, S.; Tamao, K. J. Am. Chem. Soc. 2001, 123, 11372-11375. https://doi.org/10.1021/ja015957w
  37. Song, K. C.; Lee, K. M.; Kim, H.; Lee, Y. S.; Lee, M. H.; Do, Y. J. Organomet. Chem. 2012, 713, 89-95. https://doi.org/10.1016/j.jorganchem.2012.04.020
  38. Sole, S.; Gabbai, F. P. Chem. Commun. 2004, 1284-1285.
  39. Song, K. C.; Lee, K. M.; Nghia, N. V.; Sung, W. Y.; Do, Y.; Lee, M. H. Organometallics 2013, 32, 817-823. https://doi.org/10.1021/om3010542
  40. Chiu, C.-W.; Kim, Y.; Gabbai, F. P. J. Am. Chem. Soc. 2009, 131, 60-61. https://doi.org/10.1021/ja808572t
  41. Song, K. C.; Kim, H.; Lee, K. M.; Lee, Y. S.; Do, Y.; Lee, M. H. Dalton Trans. 2013, 42, 2351-2354. https://doi.org/10.1039/c2dt32605a
  42. Sun, Y.; Hudson, Z. M.; Rao, Y.; Wang, S. Inorg. Chem. 2011, 50, 3373-3378. https://doi.org/10.1021/ic1021966
  43. Xu, W.-J.; Liu, S.-J.; Zhao, X.-Y.; Sun, S.; Cheng, S.; Ma, T.-C.; Sun, H.-B.; Zhao, Q.; Huang, W. Chem. Eur. J. 2010, 16, 7125-7133. https://doi.org/10.1002/chem.201000362
  44. Lee, K. M.; Huh, J. O.; Kim, T.; Do, Y.; Lee, M. H. Dalton Trans. 2011, 40, 11758-11764. https://doi.org/10.1039/c1dt11064k
  45. Sun, Y.; Wang, S. Inorg. Chem. 2009, 48, 3755-3767. https://doi.org/10.1021/ic9000335
  46. Sun, Y.; Ross, N.; Zhao, S.-B.; Huszarik, K.; Jia, W.-L.; Wang, R.-Y.; Macartney, D.; Wang, S. J. Am. Chem. Soc. 2007, 129, 7510-7511. https://doi.org/10.1021/ja0725652
  47. Wade, C. R.; Ke, I.-S.; Gabbai, F. P. Angew. Chem. Int. Ed. 2012, 51, 478-481. https://doi.org/10.1002/anie.201106242
  48. Zhao, H.; Gabbai, F. P. Organometallics 2012, 31, 2327-2335. https://doi.org/10.1021/om2012216
  49. Wade, C. R.; Gabbai, F. P. Organometallics 2011, 30, 4479-4481. https://doi.org/10.1021/om200499y
  50. Kim, Y.; Huh, H.-S.; Lee, M. H.; Lenov, I. L.; Zhao, H.; Gabbai, F. P. Chem. Eur. J. 2011, 17, 2057-2062. https://doi.org/10.1002/chem.201002861
  51. Zhao, H.; Gabbai, F. P. Nat Chem 2010, 2, 984-990. https://doi.org/10.1038/nchem.838
  52. Wade, C. R.; Gabbai, F. P. Inorg. Chem. 2010, 49, 714-720. https://doi.org/10.1021/ic9020349
  53. Matsumoto, T.; Wade, C. R.; Gabbai, F. P. Organometallics 2010, 29, 5490-5495. https://doi.org/10.1021/om100415z
  54. Kim, Y.; Zhao, H.; Gabbai, F. P. Angew. Chem. Int. Ed. 2009, 48, 4957-4960. https://doi.org/10.1002/anie.200901275
  55. Hudnall, T. W.; Gabbai, F. P. Chem. Commun. 2008, 4596-4597.
  56. Chiu, C.-W.; Gabbai, F. P. Dalton Trans. 2008, 814-817.
  57. Lee, M. H.; Gabbai, F. P. Inorg. Chem. 2007, 46, 8132-8138. https://doi.org/10.1021/ic700360a
  58. Chiu, C.-W.; Gabbai, F. P. J. Am. Chem. Soc. 2006, 128, 14248-14249. https://doi.org/10.1021/ja0658463
  59. Wade, C. R.; Gabbai, F. P. Dalton Trans. 2009, 9169-9175.
  60. Kim, Y.; Gabbai, F. P. J. Am. Chem. Soc. 2009, 131, 3363-3369. https://doi.org/10.1021/ja8091467
  61. Hudnall, T. W.; Kim, Y.-M.; Bebbington, M. W. P.; Bourissou, D.; Gabbai, F. P. J. Am. Chem. Soc. 2008, 130, 10890-10891. https://doi.org/10.1021/ja804492y
  62. Lee, M. H.; Agou, T.; Kobayashi, J.; Kawashima, T.; Gabbai, F. P. Chem. Commun. 2007, 1133-1135.
  63. Agou, T.; Sekine, M.; Kobayashi, J.; Kawashima, T. Chem. Eur. J. 2009, 15, 5056-5062. https://doi.org/10.1002/chem.200802159
  64. Hudnall, T. W.; Gabbai, F. P. J. Am. Chem. Soc. 2007, 129, 11978-11986. https://doi.org/10.1021/ja073793z
  65. Huh, J. O.; Kim, H.; Lee, K. M.; Lee, Y. S.; Do, Y.; Lee, M. H. Chem. Commun. 2010, 46, 1138-1140. https://doi.org/10.1039/b918263b
  66. Li, J.; Zhang, G.; Zhang, D.; Zheng, R.; Shi, Q.; Zhu, D. J. Org. Chem. 2010, 75, 5330-5333. https://doi.org/10.1021/jo1007306

Cited by

  1. Theoretical Insight Into the Role of Triarylboron Substituents in Tetradentate Dianionic Bis(N-heterocyclic carbene) Platinum(II) Chelates - Improving the Performance of Blue Light Emission vol.2015, pp.11, 2015, https://doi.org/10.1002/ejic.201403092
  2. Lewis acidity enhancement of triarylborane by appended phosphine oxide groups vol.44, pp.10, 2015, https://doi.org/10.1039/C5DT00042D
  3. Pyridalthiadiazole acceptor-functionalized triarylboranes with multi-responsive optoelectronic characteristics vol.8, pp.8, 2017, https://doi.org/10.1039/C6SC03097A
  4. Supramolecular Pt(II) and Ru(II) Trigonal Prismatic Cages Constructed with a Tris(pyridyl)borane Donor vol.57, pp.18, 2013, https://doi.org/10.1021/acs.inorgchem.8b01830