DOI QR코드

DOI QR Code

Pharmacophore Models of Paclitaxel- and Epothilone-Based Microtubule Stabilizing Agents

  • Lee, Sangbae (Department of Immunology, Beckman Research Institute of the City of Hope) ;
  • Lee, Yuno (Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU)) ;
  • Briggs, James M. (Department of Biology and Biochemistry, University of Houston) ;
  • Lee, Keun Woo (Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU))
  • Received : 2013.02.25
  • Accepted : 2013.04.01
  • Published : 2013.07.20

Abstract

Microtubules play an important role in intracellular transport, mobility, and particularly mitosis. Paclitaxel (Taxol$^{TM}$) and paclitaxel-like compounds have been shown to be anti-tumor agents useful for various human tumors. Paclitaxel-like compounds operate by stabilizing microtubules through interface binding at the interface between two ${\beta}$-tubulin monomers in adjacent protofilaments. In this paper we present the elucidation of the structural features of paclitaxel and paclitaxel-like compounds (e.g., epothilones) with microtubule stabilizing activities, and relate their activities to spatial and chemical features of the molecules. CATALYST program was used to generate three-dimensional quantitative structure activity relationships (3D-QSARs) resulting in 3D pharmacophore models of epothilone- and paclitaxel-derivatives. Pharmacophore models were generated from diverse conformers of these compounds resulting in a high correlation between experimental and predicted biological activities (r = 0.83 and 0.91 for epothilone and paclitaxel derivatives, respectively). On the basis of biological activities of the training sets, five- and four-feature pharmacophore hypotheses were generated in the epothilone and paclitaxel series. The validation of generated hypotheses was achieved by using twelve epothilones and ten paclitaxels, respectively, which are not in the training sets. The clustering (grouping) and merging techniques were used in order to supplement spatial restrictions of each of hypothesis and to develop more comprehensive models. This approach may be of use in developing novel inhibitor candidates as well as contributing a better understanding of structural characters of many compounds useful as anticancer agents targeting microtubules.

Keywords

References

  1. Nicolaou, K.C.; Roschangar, F.; Vourloumis, D. Chem. Int. Ed. 1998, 37, 2014-2045. https://doi.org/10.1002/(SICI)1521-3773(19980817)37:15<2014::AID-ANIE2014>3.0.CO;2-2
  2. Brinkley, B. R. Cold Spring Harbor Symp. Quant. Biol. 1982, 46, 1029-1038. https://doi.org/10.1101/SQB.1982.046.01.095
  3. Ball, E. H.; Singer, J. J. Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 123-126. https://doi.org/10.1073/pnas.79.1.123
  4. Cooper, M. S.; Cornell-Bell, A. H.; Chernjawsky, A.; Dani, J. W.; Smith, S. J. Cell 1990, 61, 135-145. https://doi.org/10.1016/0092-8674(90)90221-Y
  5. Rasenick, M. M.; Wang, N.; Yan, K. Adv. Second Messenger Phosphoprotein Res. 1990, 24, 381-386.
  6. Scholey, J. M. Nature 1990, 343, 118-120. https://doi.org/10.1038/343118a0
  7. Schiff, P. B.; Fant, J.; Horwitz, S. B. Nature 1979, 277, 665-667. https://doi.org/10.1038/277665a0
  8. Chaudhuri, A. R.; Seetharamalu, P.; Schwarz, P. M.; Hausheer, F. H.; Luduena, R. F. J. Mol. Biol. 2000, 303, 679-692. https://doi.org/10.1006/jmbi.2000.4156
  9. Li, Y.; Kobayashi, H.; Hashimoto, Y.; Shirai, R.; Hirata, A.; Hayashi, K.; Hamada, Y.; Shioiri, T.; Iwasaki, S. Chemico-Biological Interactions 1994, 93, 175-183. https://doi.org/10.1016/0009-2797(94)90018-3
  10. Jordan, M. A.; Toso, R. J.; Thrower, D.; Wilson, L. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 9552-9556. https://doi.org/10.1073/pnas.90.20.9552
  11. Kobayashi, J.; Hosoyama, H.; Wang, X.-X.; Shigemori, H.; Koiso, Y.; Iwasaki, S.; Sasaki, T.; Naito, M.; Tsuruo, T. Bioorg. Med. Chem. Lett. 1997, 7, 393-398. https://doi.org/10.1016/S0960-894X(97)00029-2
  12. Ojima, I.; Kuduk, S. D.; Pera, P.; Veith, J. M.; Bernacki, R. J. J. Med. Chem. 1997, 40, 279-285. https://doi.org/10.1021/jm9606711
  13. Roh, E. J.; Kim, D.; Choi, J. Y.; Lee, B.-S.; Lee, C. O.; Song, C. E. Bioorg. Med. Chem. 2002, 10, 3135-3143. https://doi.org/10.1016/S0968-0896(02)00217-1
  14. Hood, K. A.; West, L. M.; Northcote, P. T.; Berridge, M. V.; Wakefield, J.; Miller, J. H.; Peloruside, A. Cancer Res. 2002, 62, 3356-3360.
  15. Chou, T.-C.; Zhang, X.-G.; Harris, C. R.; Kuduk, S. D.; Balog, A.; Savin, K. A.; Bertino, J. R.; Danishefsky, J. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 15798-15802. https://doi.org/10.1073/pnas.95.26.15798
  16. McDaid, H. M.; Mani, S.; Shen, H.-J.; Muggia, F.; Sonnichsen, D.; Horwitz, S. B. Clin. Cancer Res. 2002, 8, 2035-2043.
  17. Arslanian, R. L.; Tang, L.; Blough, S.; Ma, W.; Qiu, R.-G.; Katz, L.; Carney, J. R. J. Nat. Prod. 2002, 65, 1061-1064. https://doi.org/10.1021/np020120f
  18. Buey, R. M.; Diaz, J. F.; Andreu, J. M.; O'Brate, A.; Giannakakou, P.; Nicolaou, K. C.; Sasmal, P. K.; Ritzen, A.; Namoto, K. Chem. Biol. 2004, 11, 225-236.
  19. Mastropaolo, D.; Camerman, A.; Luo, Y.; Brayer, G. D.; Camerman, N. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 6920-6924. https://doi.org/10.1073/pnas.92.15.6920
  20. Georg, G. I.; Chen, T. T.; Ojima, I.; Vyas, D. M. Taxane Anticancer Agents: Basic Science and Current Status, ACS Symp. Series 583; The American Chemical Society: Washington, D. C., 1995.
  21. Nicolaou, K. C.; Winssinger, N.; Vourloumis, D.; Ohshima, T.; Kim, S.; Pfefferkorn, J.; Xu, J. Y.; Li, T. J. Am. Chem. Soc. 1998, 120, 10814-10826. https://doi.org/10.1021/ja9823870
  22. Cowden, C. J.; Paterson, I. Nature (London) 1997, 387, 238-239. https://doi.org/10.1038/387238a0
  23. Service, R. F. Science 1996, 274, 2009-2010. https://doi.org/10.1126/science.274.5295.2009
  24. Suffness, M., Ed.; In $Taxol^{(R)}$: Science and Applications; CRC Press: Boca Raton, FI, 1995.
  25. Bollag, D. M.; McQueney, P. A.; Zhu, J.; Hensens, O.; Koupal, L.; Leisch, J.; Goetz, M.; Lazarides, E.; Woods, C. M. Cancer Res. 1995, 55, 2325-2333.
  26. Rivkin, A.; Njardarson, J. T.; Biswas, K.; Chou, T.-C.; Danishefsky, S. J. J. Org. Chem. 2002, 67, 7737-7740. https://doi.org/10.1021/jo0204294
  27. Rowinsky, E. K.; Eisenhauer, E. A.; Chaudhry, V.; Arbuck, S. G.; Donehawer, R. C. Semin. Oncol. 1993, 20, 1-15.
  28. Fletcher, B. S.; Kujubadu, D. A.; Perrin, D. M.; Herschman, H. R. J. Biol. Chem. 1992, 267, 4338-4344.
  29. Tsuji, M.; Dubois, R. N. Cell 1995, 3, 493-501.
  30. Essayan, D. M.; Kagey-Sobotka, A.; Colarusso, P. J.; Lichtenstein, L. M.; Ozols, R. F.; King, E. D. J. Allergy Clin. Immunol. 1996, 97, 42-46. https://doi.org/10.1016/S0091-6749(96)70281-6
  31. Giannakakou, P.; Sackett, D. L.; Kang, Y.-K.; Zhan, Z.; Buters, J. T. M.; Fojo, T.; Poruchynsky, M. S. J. Biol. Chem. 1997, 272, 17118-17125. https://doi.org/10.1074/jbc.272.27.17118
  32. Snyder, J. P.; Nettles, J. H.; Cornett, B.; Downing, K. H.; Nogales, E. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 5312-5316. https://doi.org/10.1073/pnas.051309398
  33. CATALYST version 4.6; Accelrys, Inc., San Diego, CA, 2001, http:/www.accelrys.com
  34. Clark, D. E.; Westhead, D. R.; Sykes, R. A.; Murray, C. W. J. Comp. Aided Mol. Des. 1996, 10, 397-416. https://doi.org/10.1007/BF00124472
  35. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. J. Comput. Chem. 1983, 4, 187-217. https://doi.org/10.1002/jcc.540040211
  36. Nogales, E.; Wolf, S. G.; Downing, K. H. Nature 1998, 391, 199-203. https://doi.org/10.1038/34465
  37. InsightII; Accelrys: San Diego, CA, 1998.
  38. Smellie, A.; Teig, S. L.; Towbin, P. J. J. Compt. Chem. 1995, 16,171-187. https://doi.org/10.1002/jcc.540160205
  39. Smellie, A.; Kahn, S. D.; Teig, S. L. J. Chem. Inf. Comput. Sci. 1995, 35, 285-294. https://doi.org/10.1021/ci00024a018
  40. Smellie, A.; Kahn, S. D.; Teig, S. L. J. Chem. Inf. Comput. Sci. 1995, 35, 295-304. https://doi.org/10.1021/ci00024a019
  41. Gund, P. Progress in Molecular and Subcellular Biology; Hahn, F. E., Ed.; Springer-Verlag: New York, 1997; Vol 5, pp 117-143.
  42. Greene, J.; Kahn, S.; Savoy, H.; Sprague, P.; Teig, S. J. Chem. Inf. Comput. Sci. 1994, 34, 1297-1308. https://doi.org/10.1021/ci00022a012
  43. Barnum, D.; Greene, J.; Smellie, A.; Sprague, P. J. Chem. Inf. Comput. Sci. 1996, 36, 563-571. https://doi.org/10.1021/ci950273r
  44. Andrea, T. A.; Dietrich, S. W.; Murray, W. J.; Kollman, P. A.; Jorgensen, E. C.; Rothenberg, S. A. J. Med. Chem. 1979, 22, 221-232. https://doi.org/10.1021/jm00189a002
  45. Guner, O. F. Pharmacophore, Perception, Development, and Use in Drug Design; IUL Biotechnology Series: 2000; p 504.
  46. Ekins, S.; Bravi, G.; Binkley, S.; Gillespie, J. S.; Ring, B. J.; Wrighton, S. A. Drug Metab. Dispos. 2000, 28, 994-1002.
  47. Nicolaou, K. C.; Vourloumis, D.; Li, T.; Pastor, J.; Winssinger, N.; He, Y.; Ninkovic, S.; Sarabia, F.; Vallberg, H.; Roschangar, F.; King, N. P.; Finlay, M. R. V.; Giannakakou, P.; Hamel, E. Angew. Chem. Int. Ed. Engl. 1997, 36, 2097-2103. https://doi.org/10.1002/anie.199720971
  48. Nicolaou, K. C.; Ritzen, A.; Namoto, K.; Buey, R. M.; Diaz, J. F.; Andreu, J. M.; Wartmann, M.; Altmann, K.-H.; O'Brate, A.; Giannakakou, P. Tetrahedron 2002, 58, 6413-6432. https://doi.org/10.1016/S0040-4020(02)00655-5
  49. Nicolaou, K. C.; Sasmal, P. K.; Rassias, G.; Reddy, M. V.; Altmann, K.-H.; Wartmann, M.; O'Brate, A.; Giannakakou, P. Angew. Chem. Int. Ed. 2003, 42, 3515-3520. https://doi.org/10.1002/anie.200351819
  50. Ojima, I.; Slater, J. C.; Pera, P.; Veith, J. M.; Abouabdellah, A.; Begue, J.-P.; Bernacki, R. J. Bioorg. Med. Chem. Lett. 1997, 7, 133-138. https://doi.org/10.1016/S0960-894X(96)00595-1
  51. Ojima, I.; Bounaud, P.-Y.; Ahern, D. G. Bioorg. Med. Chem. Lett. 1999, 9, 1189-1194. https://doi.org/10.1016/S0960-894X(99)00161-4
  52. Ojima, I.; Inoue, T.; Chakravarty, S. J. Fluor. Chem. 1999, 97, 3-10. https://doi.org/10.1016/S0022-1139(99)00058-5
  53. Cheng, Q.; Oritani, T.; Horiguchi, T.; Yamada, T.; Mong, Y. Bioorg. Med. Chem. Lett. 2000, 10, 517-521. https://doi.org/10.1016/S0960-894X(00)00031-7
  54. Cheng, Q.; Oritani, T.; Horiguchi, T. Tetrahedron 2000, 56, 1667-1679. https://doi.org/10.1016/S0040-4020(00)00073-9
  55. Cheng, Q.; Kiyota, H.; Yamaguchi, M.; Horiguchi, T.; Oritani, T. Bioorg. Med. Chem. Lett. 2003, 13, 1075-1077. https://doi.org/10.1016/S0960-894X(03)00054-4
  56. Wrasidlo, W.; Gaedicke, G.; Guy, R. K.; Renaud, J.; Pitsinos, E.; Nicolaou, K. C.; Reisfeld, R. A.; Lode, H. N. Bioconjugate Chem. 2002, 13, 1093-1099. https://doi.org/10.1021/bc0200226
  57. Mustata, G. I.; Brigo, A.; Briggs, J. M. Bioorg. Med. Chem. Lett. 2004, 14, 1447-1454. https://doi.org/10.1016/j.bmcl.2004.01.027
  58. Debnath, A. K. J. Med. Chem. 2003, 46, 4501-4515. https://doi.org/10.1021/jm030265z
  59. Ekins, S.; Bravi, G.; Wikel, J. H.; Wrighton, S. A. J. Pharmacol. Exp. Ther. 1999, 291, 424-433.
  60. Bravi, G.; Gancja, E.; Mascani, P.; Pegna, M.; Todeschini, R.; Zaliani, A. J. Comp. Aided Mol. Des. 1997, 11, 79-82. https://doi.org/10.1023/A:1008079512289
  61. Ekins, S.; Bravi, G.; Ring, B. J.; Gillespie, T. A.; Gillespie, J. S.; Vandenbranden, M.; Wrighton, S. A.; Wikel, J. H. J. Pharmacol. Exp. Ther. 1999, 288, 21-29.
  62. Lee, K. W.; Briggs, J. M. J. Comp. Aided Mol. Des. 2001, 15, 41-55. https://doi.org/10.1023/A:1011140723828
  63. Todeschini, R.; Grammatica, P. Quant. Struct. Act. Relat. 1997, 16, 113-119. https://doi.org/10.1002/qsar.19970160203
  64. Todeschini, R.; Bettiol, C.; Giurin, G.; Gramatica, P.; Miana, P.; Argese, E. Chemosphere 1996, 33, 71-79. https://doi.org/10.1016/0045-6535(96)00153-1
  65. Todeschini, R.; Lasagni, M.; Marengo, E. J. Chemom. 1994, 8, 263-273. https://doi.org/10.1002/cem.1180080405
  66. Todeschini, R.; Vighi, M.; Provenzani, R.; Finzio, A.; Grammatica, P. Chemosphere 1996, 32, 1527-1545. https://doi.org/10.1016/0045-6535(96)00060-4
  67. Bleckman, A.; Meiler, J. QSAR Comb. Sci. 2003, 22, 722-728. https://doi.org/10.1002/qsar.200330837

Cited by

  1. Synergistic effect and drug-resistance relief of paclitaxel and cisplatin caused by Co-delivery using polymeric micelles vol.132, pp.6, 2014, https://doi.org/10.1002/app.41440
  2. Pharmacophore and molecular docking based identification of novel structurally diverse PDE-5 inhibitors vol.24, pp.2, 2015, https://doi.org/10.1007/s00044-014-1144-4
  3. Molecular modeling study on the tubulin-binding modes of epothilone derivatives: Insight into the structural basis for epothilones activity vol.90, pp.6, 2017, https://doi.org/10.1111/cbdd.13046
  4. Discovery of a selective, safe and novel anti-malarial compound with activity against chloroquine resistant strain of Plasmodium falciparum vol.5, pp.None, 2013, https://doi.org/10.1038/srep13838