DOI QR코드

DOI QR Code

A Study on Compressive Creep Behavior of ACM Rubber using TMA Thermal Analysis

TMA 열분석을 이용한 ACM 고무의 압축크립거동 연구

  • 안원술 (계명대학교 화학공학과) ;
  • 이형석 (한국씰텍(주) 기술연구소)
  • Received : 2013.03.13
  • Accepted : 2013.04.03
  • Published : 2013.06.30

Abstract

A study on compressive creep behavior of ACM rubber for automotive engine gasket was performed using TMA thermal analysis. From the results of isothermal measurements with constant load of 1 N at several different temperatures of 160, 180, 200, and $220^{\circ}C$, compressive creep data at the given temperatures were obtained, and therefrom, shift factor ($a_T$) and master curve at reference temperature of $160^{\circ}C$ were obtained using time-temperature superposition principle (TTSP). $C_1$ and $C_2$ of WLF (Williams-Landel-Ferry) equation were calculated through the WLF plot as -1.107 and 11.571, respectively. From this, life time of ACM rubber at $120^{\circ}C$ was predicted as about 24,000 hrs.

자동차 엔진 개스킷용으로 사용되는 아크릴 고무(ACM)의 압축크립 거동을 TMA 열분석기를 이용하여 연구하였다. 160, 180, 200, 및 $220^{\circ}C$의 서로 다른 온도에서 1N의 일정한 힘을 가하고 등온시험을 행한 결과, 시간에 따른 압축크립거동을 얻었고, 이로부터 시간-온도 중첩원리를 이용하여 기준온도 $160^{\circ}C$에서의 이동인자 $a_T$를 실험적으로 결정하고, 고온 데이터의 기준온도로의 평행 이동에 의하여 마스터 곡선을 얻을 수 있었다. 또한 WLF(Williams-Landel-Ferry) plot을 통하여 계산된 $C_1$$C_2$는 각각 -1.107 및 11.571로 계산되었으며, WLF식을 이용하는 $120^{\circ}C$에서의 ACM 고무재료의 수명은 약 24,000시간으로 예측되었다.

Keywords

References

  1. I. S. Huh, "Engine Gasket Materials and Property Evaluation", Rubber Technology(Korea), 1, 78 (2000).
  2. TOA Acron, AR-501, 501L, AR540, AR540L Heat and Oil Resistance Polyacrylate Elastomer Bulletin.
  3. D. J. Toop, "Theory of Life Testing and Use of Thermogravimetric Analysis to Predict the Thermal Life of Wire Enamels", IEEE Trans. Elec. Insul., E1-6, 2 (1971).
  4. W. D. Kim, W. S. Kim, C. S. Woo, and S. J. Cho, "Prediction of Useful Life by Heat Ageing of Motor Fan Isolating Rubber", Elastomer(Korea), 37, 107 (2002).
  5. J. Wise, K. T. Gillen and R. L. Clough, "An ultra sensitive technique for testing the Arrhenius extrapolation assumption for thermally aged elastomers", Polym. Degrd. Stab., 49, 403 (1995). https://doi.org/10.1016/0141-3910(95)00137-B
  6. H. S. Lee, J. H. Do, W. Ahn, and C. Kim. " A Study on Physical Properties and Life Time Prediction of ACM rubber for Automotive Engine Gasket", Elast. Compos., 47(3), 254 (2012). https://doi.org/10.7473/EC.2012.47.3.254
  7. W. S. Ahn and K. H. Park. "A Study on Thermal Life-Time Expectation of NR Rubber Material using Isothermal TGA and TMA", Elast. Compos., 44(3), 269 (2009).
  8. M. Patel, P. R. Morrell, and J. J. Murphy, "Continuous and intermittent stress relaxation studies on foamed polysiloxane rubber", Polym. Degrad. Stab., 87, 201 (2005). https://doi.org/10.1016/j.polymdegradstab.2004.07.020
  9. M. Patel, M. Soames, A. R. Skinner, and T. S. Stephens, "Stress relaxation and thermogravimetric studies on room temperature vulcanized polysiloxane rubbers", Polym. Degrad. Stab., 83, 111 (2004). https://doi.org/10.1016/S0141-3910(03)00231-3
  10. C. Briody, B. Duignan, S. Jerrams, and S. Ronan, "Prediction of compressive creep behaviour in flexible polyurethane foam over long time scales and at elevated temperatures", Polymer Testing, 31, 1019 (2012). https://doi.org/10.1016/j.polymertesting.2012.07.006