Communication

Electron-Beam Mediated Rearrangement and Fragmentation of Bis(diphenylphosphino)alkane Derivatives in Gas Phase

Yea-sel Jeon, Jeong Chul Choi, Young-Sik Jeong[¶] and Kwang-Jin Hwang^{*}

Department of Bio & Chemical Engineering, Hongik University, 2639 Sejongro, Jochiwon, Sejong 339-701, Korea [¶] Center for Medicinal Chemistry, Korea Research Institute of Chemical Technology, Yuseong, Daejeon 305-606, Korea

ABSTRACT: The irradiation of electron-beam onto bis-(diphenylphosphino)methane, ethane, propane and butane initiated phenyl-shift from a phosphine to another phosphine atom and subsequent fragmentation resulted in the formation of triphenylphosphine derivative as key intermediate. The mechanism of those processes is speculated.

Photochemical functional group conversion on a solid surface provides diverse properties on the surface which have shown potential applications in the area of nanopatterning,¹ lithography,² tribology and diagnosis.³ For a practical application in industry, the conversion should be clean, simple to lead group-to-group transformation resulting only one component as possible.

In our previous research regarding fragmentation of alkyne-cobalt-phosphino complex by E-beam irradiation, we found that 1,3-bis(diphenylphosphino)methane ligand showed unexpected fragmentation suggesting an intramolecular phenyl transfer from phosphine to P atom.⁴ From this motivation, we carried out E-beam mediated fragmentation of bis (diphenylphosphino) alkanes (DPA) in gas phase using a mass spectrometer (Micromass Inc, Autospec, at Korea Research Institute of Chemical Technology) and observed that phenyl-group migration and P-P bond formation are involved in the fragmentation pathway as key step depending on the chain length of DPA.

*To whom correspondence should be addressed. E-mail: kjhwang@hongik.ac.kr The fragmentation of phosphinoalkanes 1-4 was processed upon 20 or 70eV e-beam at 200 °C in gas phase and their data are listed in Table 1. Mass spectra of dppe and dppp are shown in Figures 2 and 3, respectively. Various fragmentation intermediates are observed including arylphosphine derivatives and representative fragments are assigned as M^+ (molecular ion), M-Ph (M-77), Ph-P-R, Ph₂P-R, Ph₃-P-R and Ph₂P-PPh₂ (P-P bond formation) where R represents C0-C4 hydrocarbon.

For the generation of triphenvlphosphine (Ph₃-P-R) fragment, phenyl migration from a phosphine to cationic P atom is proposed as in Scheme 1. Depending on the number of alkyl-carbon of DPA, a subsequent fragmentation of cationic Ph₃P-(CH₂)_n-P-Ph gave the intermediates Ph₃P-R or R-P-Ph. A serial $Ph_3P-(CH_2)_n$ peaks appeared with m/z=14 or 13 difference at m/z=262 (Ph₃P), 275 (Ph₃PCH), 289 (Ph₃PC₂H₃), 303 (Ph₃PC₃H₅) and 317 (Ph₃PC₄H₇) in 0.8-100% relative intensity as shown in Figure 2, 3. Similarly, Ph2-P-R (R=C1-C4 alkyl) peaks appeared with m/z=14 or 13 difference at m/z=199 (Ph₂PCH₂), 213 (Ph₂PC₂H₄), 227 (Ph₂PC₃H₆) and 241 (Ph₂PC₄H₈) from z/m=185. Interestingly, the base peaks of DPA were observed at various intermediates such as Ph₃P (dppm, z/m=262), M-Ph (dppp, dppb) and M⁺ (dppe, z/m=398). In addition, BP (m/z=183) is assigned for phosopindole-dehydride.5

Phenyl-group migration from a phosphine to the other P atom of DPA is quite interesting. The migration of phenyl group seems to be processed via intramolecular 1,5-shift derived by electrophilic phosphine radical cation in the irradiated DPA.⁶ Ph

Scheme 1. A proposed mechanism for fragmentation of dppe via phenyl group migration and P-P bond formation by e-beam irradiation (R; C0-C4).

Table 1.	The re-	lauve me	ensities	of interme	culates from	i aipnen	iyipnospiii	noarkanes	1 ⁻⁴ Infaulate	u wiui	/uev e-t	Jeann.
	Ph-P (108)	PhPCH (121)	Ph ₂ P (185)	Ph ₂ PCH ₂ (199)	Ph ₂ PC ₂ H ₄ (212)	Ph ₃ P (262)	Ph ₃ PCH (275)	Ph ₃ PC ₂ H ₃ (289)	Ph ₃ PC ₃ H ₅ (303)	M-Ph	(PPh ₂) ₂ (370)	M ⁺
DPPB	13.9	9.0	15.9	6.7	10.9	15.0	а	0.8	а	100 (349)	0.9	42.6 (426)
DPPP	7.4	19.4	23.1	17.9	5.53	13.7	1.9	9.1	6.9	100 (335)	а	75.8 (412)
DPPE*	9.0	5.8	42.8	5.0	1.0	46.1	32.3	61.7	-	4.6 (321)	29.3	100 (398)
DPPM	4.8	48.5	7.1	44.2	_	100	_	_	_	1.3 (307)	а	83.6 (384)

Table 1. The relative intensities of intermediates from diphenylphosphinoalkanes 1-4 irradiated with 70eV e-beam.

Numbers in parenthesis are m/z values; (a), not observed; (-), not available; (*), at 70eV. For dppb, $Ph_3PC_4H_7$ peak appeared at m/z=317(3.4).

Figure 2. MS spectrum of dppe irradiated at 70eV.

Another noticeable intermediate, tetraphenylbisphosphine Ph₂P-PPh₂ (m/z=370), was observed from dppe and dppb containing even number of alkyl carbons representing P-P bond formation. Meanwhile, dppm and dppp containing odd number of alkyl carbon did not show Ph2P-PPh2. These results suggest that P-P bond forming seems to be derived by the evolution of ethylene gas. To our best knowledge, phosphine-related photochemistry has been reported only in case of phosphite (PH₃) of which photolysis triggered P-P bond formation to give P4 or P₂H₄.^{7,8} For the mechanism of P-P bond formation in an e-beam mediated fragmentation of DPA, it is not sure whether it occur via recombination of Ph₂P or concerted cyclic transition state releasing ethylene gas resembling II cleavage.9 Thus, the Norrish type further photochemical studies of phosphinoalkanes in solution would be a practical tool for the mechanism of P-P bond formation.

ACKNOWLEDGEMENT

This work was supported by a National Research Foundation of Korea Grant funded by the Korean Government (2011-2012).

Figure 3. MS spectrum of dppp irradiated at 70eV.

KEYWORDS

Bis(diphenylphosphino)alkane, electron-beam, fragmentation, phenyl migration, P-P bonding.

Received March 31, 2013; Accepted April 30, 2013.

REFERENCES AND NOTES

- a) Kim, C. O.; Jung, J. W.; Kim, M.; Kang, T. H.; Ihm, K.; Kim, K. J.; Kim, B.; Park, J. W.; Nam, H. W.; Hwang, K.-J. Langmuir 2003, 19, 4504-4508. b) Nandivada, H.; Chen, H.-Y.; Bondarenko, L.; Lehann, J. Angew. Chem. Int. Ed. 2006, 45, 3360-3363. c) Fresco, Z. M.; Fre'chet, J. M. J. J. Am. Chem. Soc., 2005, 127, 8302-8303. d) Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X.; Mullen, K.; Fasel, R. Nature, 2010, 466, 470-473.
- a) Zabetakis, D.; Dressick, W. J. Appl. Materials Interfaces 2009, 1, 4–25. b) Hwang, H.S.; Zakhidov, A. A.; Lee, J.-K.; Andre, X.; DeFranco, J. A.; Fong, H. H.; Holmes, A. B.; Malliaras, G.G.; Ober, C. K. J. Mater. Chem., 2008, 18, 3087–3090.

- Orski, S. V.; Sheppard , G. R.; Arumugam, S.; Arnold, R. M.; Popik, V. V.; Locklin, J. *Langmuir* 2012, 28, 14693. b) Sun, X.-L.; Stabler, C. L.; Cazalis, C. S.; Chaikof, E. L. Bioconjugate Chem. 2006, 17, 52-57.
- 4. Park, S; Lee, Y. B.; Hwang, K.-J. Bull. Korean Chem. Soc. 2013, 34, 689-691.
- 5. For 5H-benzo[b]phosphindole, m/z=184.
- 6. Olah, G. A.; Meyer, M. W. J. Org. Chem., 1962,

27, 3682-3683.

- 7. Ferris J. P.; Benson R. J. Am. Chem. Soc., 1981, 103, 1922-1927.
- Ferris J. P.; Bossard A.; Khwaja H. J. Am. Chem. Soc., 1984, 106, 318-324.
- a) Niu, Y.; Christophy, E.; Hossenlopp, J. M. J. Am. Chem. Soc., 1996, 118, 4188-4189. b) Yang, N.C.; Yang, D.H. J. Am. Chem. Soc., 1958, 80, 2913-2914.