DOI QR코드

DOI QR Code

Photocatalytic Behavior of TiO2 Films : Thickness and Roughness Dependence

  • Kim, Hark Jin (Department of Chemistry, Inha University) ;
  • Yoo, Seon Mi (Department of Chemistry, Inha University) ;
  • Yu, Sora (Department of Chemistry, Inha University) ;
  • Lee, Wan In (Department of Chemistry, Inha University)
  • Received : 2013.03.21
  • Accepted : 2013.04.20
  • Published : 2013.03.01

Abstract

Transparent $TiO_2$ films in various thicknesses were prepared by sol-gel and MOCVD method, respectively, and their photocatalytic activities in decomposing gaseous 2-propanol were evaluated. The surfaces and grain structures of the prepared films were characterized by FESEM, XRD, and AFM. It was found that the photocatalytic activities of $TiO_2$ films were greatly dependent on the film thickness and surface roughness: The photocatalytic activity increases with the increase of film thickness, while it decreases with the increase of surface roughness. We have proposed that these phenomena originate from the transfer of photogenerated electron and hole pairs from the bulk to the surface of $TiO_2$ film. Several experimental evidences supporting this mechanism have also been provided.

Keywords

References

  1. Turchi, C. S.; Ollis, D. F. J. Catal. 1990, 122, 178. https://doi.org/10.1016/0021-9517(90)90269-P
  2. Matthews R. W. J. Catal. 1988, 111, 264. https://doi.org/10.1016/0021-9517(88)90085-1
  3. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69. https://doi.org/10.1021/cr00033a004
  4. Serpone, N. Sol. Energy Mater. Sol. Cells 1995, 38, 369. https://doi.org/10.1016/0927-0248(94)00230-4
  5. Ohko, Y.; Hashimoto, K.; Fujishima, A. J. Phys. Chem. A 1997, 101, 8057. https://doi.org/10.1021/jp972002k
  6. Song, K. Y.; Park, M. K.; Kwon, Y. T.; Lee, H. W.; Chung W. J.; Lee, W. I. Chem. Mater. 2001, 13, 2349. https://doi.org/10.1021/cm000858n
  7. Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Nature 1997, 388, 431. https://doi.org/10.1038/41233
  8. Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe T. Adv. Mater. 1998, 10, 135. https://doi.org/10.1002/(SICI)1521-4095(199801)10:2<135::AID-ADMA135>3.0.CO;2-M
  9. Dhananjeyan, M. R.; Mielczarski, E.; Thampi, K. R.; Buffat, P.; Bensimon, M.; Kulik, A.; Mielczarski, J.; Kiwi, J. J. Phys. Chem. B 2001, 105, 12046. https://doi.org/10.1021/jp011339q
  10. Wang, C‐M.; Heller, A.; Gerischer, H. J. Amer. Chem. Soc. 1992, 114, 5230.
  11. Harada, D. E.; Ueda, T. Chem. Phys. Lett. 1984, 106, 229. https://doi.org/10.1016/0009-2614(84)80231-6
  12. Martin, S. T.; Herrmann, H.; Hoffmann, M. R. J. Chem. Soc. Faraday Trans. 1994, 90, 3323. https://doi.org/10.1039/ft9949003323
  13. Weaver, S.; Mills, G. J. Phys. Chem. B 1997, 101, 3769.
  14. Ramakrishna, G.; Ghosh, H. N. J. Phys. Chem. B 2001, 105, 7000. https://doi.org/10.1021/jp011291g
  15. Hirakawa, T.; Kominami, H.; Ohtani, B.; Nosaka, Y. J. Phys. Chem. B 2001, 105, 6993. https://doi.org/10.1021/jp0112929
  16. Yamakata, A.; Ishibashi, T.‐A.; Onishi, H. J. Phys. Chem. B 2001, 105, 7258. https://doi.org/10.1021/jp010802w
  17. Ishibashi, K.; Fujishima, A.; Watanabe, T.; Hashimoto, K. J. Phys. Chem. B 2000, 104, 4934.
  18. Cui, H.; Shen, H.‐S.; Gao, Y‐M.; Dwight, K.; Wold, A. Mat. Res. Bull. 1993, 28, 195. https://doi.org/10.1016/0025-5408(93)90152-4
  19. Yu, J.; Zhao, X.; Zhao, Q. J. Mat. Sci. Lett. 2000, 19, 1015. https://doi.org/10.1023/A:1006705316651
  20. Kwon, Y. T.; Song, K. Y.; Lee, W. I.; Choi, G. J.; Do Y. R. J. Catal. 2000, 191, 192. https://doi.org/10.1006/jcat.1999.2776
  21. Borgarello, E.; Serpone, N.; Emo, G.; Harris, R.; Pelizzetti, E.; Minero, C. Inorg. Chem. 1986, 25, 4499. https://doi.org/10.1021/ic00245a010
  22. Gao, Y.‐M.; Lee, W.; Trehan, R.; Kershaw, R.; Dwight, K.; Wold, A. Mater. Res. Bull. 1991, 26, 1247. https://doi.org/10.1016/0025-5408(91)90138-C
  23. Kiwi, J.; Morrison, C. J. Phys. Chem. 1984, 88, 6146. https://doi.org/10.1021/j150669a018
  24. Stathatos, E.; Tsiourvas, D.; Lianos, P. Colloids Surf. A 1999, 149, 49. https://doi.org/10.1016/S0927-7757(98)00292-1

Cited by

  1. Enhancement in the photostability of natural dyes for dye-sensitized solar cell (DSSC) applications: a review vol.41, pp.10, 2017, https://doi.org/10.1002/er.3703
  2. Effect of heat treatment temperature on the performance of nano-TiO 2 coating in protecting 316L stainless steel against corrosion under UV illumination and dark conditions vol.258, 2014, https://doi.org/10.1016/j.surfcoat.2014.07.071
  3. Algal buffer layers for enhancing the efficiency of anthocyanins extracted from rose petals for natural dye-sensitized solar cell (DSSC) 2017, https://doi.org/10.1002/er.3866