DOI QR코드

DOI QR Code

WFDS를 이용한 풍속에 따른 산림화재 복사열 강도 평가

Evaluation of the Radiant Heat Effects according to the Change of Wind Velocity in Forest Fire by using WFDS

  • 송동우 (서울과학기술대학교 에너지환경대학원) ;
  • 이수경 (서울과학기술대학교 에너지환경대학원)
  • Song, Dong-Woo (Graduate School of Energy and Environment, Seoul National Univ. of Science & Technology) ;
  • Lee, Su-Kyung (Graduate School of Energy and Environment, Seoul National Univ. of Science & Technology)
  • 투고 : 2012.12.12
  • 심사 : 2013.06.14
  • 발행 : 2013.06.30

초록

전 세계적으로 기후변화 등의 원인으로 산림화재가 대형화되고 있다. 산림이 국토의 약 63.7 %를 차치하며, 산림에 인접해서 산업시설 등의 주요시설들이 많은 국내의 경우에는 산림화재가 대형재난으로 확산될 가능성이 매우 높다. 이에 본 연구에서는 수관화로 발달한 산림화재에서 화염의 복사열이 미치는 피해영향거리를 풍속의 변화에 따라 분석하였다. 또한, 영향거리를 분석하기 위하여 주변시설에 미칠 수 있는 복사열의 안전기준을 조사하였으며, 기준 복사열로 $5kW/m^2$$12.5kW/m^2$, $37.5kW/m^2$를 제시하였다. 산림화재 피해영향평가를 위해 FDS의 산림화재 확장 프로그램인 WFDS를 활용하였고, 해석조건으로 국내에 일반적으로 분포가 높은 산림조건에 대해 조사하여 이를 적용하였다. 그 결과는 풍속에 따른 복사열 최대영향거리로 제시하였다. 풍속 0~10 m/s에 있어서 풍속의 증가에 따라 영향거리도 증가하는 경향이 있으며, 풍속 8 m/s에서 영향거리가 최대가 되었다. 또한, 최대 영향거리는 수목 연료의 함수율 증가에 따라 크게 감소하는 것을 확인하였다. 본 연구는 산림화재로 인한 주변시설의 피해영향을 정량적으로 평가하는데 기여할 수 있다.

The wildland fire intensity and scale are getting bigger owing to climate change in the world. In the case of domestic, the forest is distributed over approximately 63.7 % of country and the main facilities like a industrial facility or gas facility abuts onto it. Therefore there is potential that the wildland fire is developed to a large-scale disaster. In this study, the effect distances of the radiant heat flux from the crown fire are analysed according to the change of wind velocity. The safety criteria concerning the radiant heat flux to influence on the surrounding were researched to analyse the effect distances. The criteria of radiant heat flux were chosen $5kW/m^2$, $12.5kW/m^2$, $37.5kW/m^2$. WFDS, which is an extension of NIST's Fire Dynamics Simulator, was used to consequence analysis of the forest fire. In order to apply the analysis conditions, it is researched the forest conditions that is generally distributed in domestic region. As the result, the maximum effect distances by radiant heat were showed at the horizontal and vertical direction. When the wind velocity varied from 0 to 10 m/s, the maximum effect distance increased as the wind velocity increases. Interesting point is that the maximum effect distance were shown at the wind velocity of 8 m/s. The maximum effect distance was decreased according as the fuel moisture of trees increase. This study can contribute to analyse quantitative risk about the damage effect of the surrounding facilities caused by wildland fire.

키워드

참고문헌

  1. S. Y. Bae, D. H. Kim, H. S. Ryou and S. H. Lee, "A Numerical Study on the Effects of the Wind Velocity and Height of Grassland on the flame Spread Rate of Forest Fires", Journal of Korean Institute of Fire Science & Engineering, Vol. 22, No. 3, pp. 252-257 (2008).
  2. D. H. Kim, T. Tanaka, K. Himoto, M. B. Lee and K. I. Kim, "A Numerical Study of 1-D Surface Flame Spread Model - Based on a Flatland Conditions - ", Journal of Korean Institute of Fire Science & Engineering, Vol. 22, No. 2, pp. 63-69 (2008).
  3. D. H. Kim, "Semi-numerical Study on the Flame Tilt Equation due to Wind on the Surface Fire in Forest Fire", Journal of Korean Institute of Fire Science & Engineering, Vol. 23, No. 5, pp. 90-95 (2009).
  4. D. H. Kim, M. B. Lee and T. Tanaka, "Estimation of Surface Firebreak through Mathematical Method for Radiative Heat Transfer", Proceedings of 2010 Autumn Annual Conference, Korean Institute of Fire Science & Engineering, pp. 144-147 (2010).
  5. Russell A. Parsons, Jeremy Sauer and Rodman R. Linn, "Crown Fuel Spatial Variability and Predictability of Fire Spread", VI International Conference on Forest Fire Research (2010).
  6. Russell A. Parsons, William Mell and Peter McCauley, "Modeling the spatial distribution of forest crown biomass and effects on fire behavior with FUEL3D and WFDS", VI International Conference on Forest Fire Research (2010).
  7. W. E. Mell, "User Guide to WFDS - this is a work in progress", NIST, US (2010).
  8. W. E. Mell, M. A. Jenkins, J. Gould and P. Cheney, "A Physics-based approach to Modelling Grassland Fires", International Journal of Wildland Fire, Vol. 16, pp. 1-22 (2007). https://doi.org/10.1071/WF06002
  9. W. E. Mell, A. Maranghides, R. McDermott and S. L. Manzello, "Numerical Simulation and Experiments of Burning Douglas Fir Trees", Combustion and Flame, Vol. 156, No. 10, pp. 2023-2041 (2009). https://doi.org/10.1016/j.combustflame.2009.06.015
  10. Kevin McGrattan, Randall McDermott, Simo Hostikka and Jason Floyd, "Fire Dynamics Simulator (Version 5) User's Guide", National Institute of Standards and Technology (2010).
  11. K. Hill, J. Dreisbach, F. Joglar, B. Najafi, K. McGrattan, R. Peacock and A. Hamins, "Verification and Validation of Selected Fire Models for Nuclear Power Plant Applications. NUREG 1824", United States Nuclear Regulatory Commission, Washington, DC (2007).
  12. "Statistical Yearbook of Forestry", Korea Forest Service (2012).
  13. D. H. Kim, M. S. Won and M. B. Lee, "A Case Study of Forest Fire Spread in Yangyang", Annual Conference, Korean Journal of Agricultural and Forest Meteorology, No. 2, pp. 109-113 (2005).
  14. Y. J. Pack, "A Study on Forest Fire Risk in Youngdong Areas Through Combustional Characteristics of Forest Fuel", Kangwon National University (2009).
  15. W. E. Mell, S. L. Manzello and A. Maranghides, "Numerical Modeling of Fire Spread through Trees and Shrubs", International Conference on Forest Fire Research, ICFFR (2006).
  16. Elisa Schulz Baker, "Burning Characteristics of Individual Douglas-Fir Trees in the Wildland/Urban Interface", Worcester Polytechnic Institute (2011).
  17. "2010 Statistical Yearbook of Forest Fire", Korea Forest Service (2011).
  18. M. S. Won, K. S. Koo and M. B. Lee, "An Analysis of Forest Fire Occurrence Hazards by Changing Temperature and Humidity of Ten-day Intervals for 30 Years in Spring", Korean Journal of Agricultural and Forest Meteorology, Vol. 8, No. 4, pp. 250-259 (2006).
  19. KOSHA CODE P-31-2001, "Technique for Damage Assessment", Korea Occupational Safety & Health Agency (2001).
  20. NFPA 59A, "Standard for the Production, Storage, and Handling of Liquefied Natural Gas (LNG)", National Fire Protection Association (2009).
  21. HSE, "Fire and Explosion Strategy, Issue 1", Heath and Safety Executive, http://www.hse.gov.uk/offshore/strategy/effects.htm.
  22. EN 1473, "Installation and Equipment for Liquefied Natural Gas - Design of Onshore Installations", European Standard (2007).
  23. NFPA 921, "Guide for Fire and Explosion Investigations", National Fire Protection Association (2008).