DOI QR코드

DOI QR Code

흰등멸구 [Sogatella furcifera (Horvath)] 온도 발육 모델

Temperature-dependent Development Model of White Backed Planthopper (WBPH), Sogatella furcifera (Horvath) (Homoptera: Delphacidae)

  • 박창규 (국립농업과학원 농산물안전성부 작물보호과) ;
  • 박홍현 (국립농업과학원 농산물안전성부 작물보호과) ;
  • 김광호 (국립농업과학원 농산물안전성부 작물보호과) ;
  • 이상계 (국립농업과학원 농산물안전성부 작물보호과)
  • Park, Chang-Gyu (Crop protection Division, Department of Crop Life Safety, National Academy of Agricultural Science) ;
  • Kim, Kwang-Ho (Crop protection Division, Department of Crop Life Safety, National Academy of Agricultural Science) ;
  • Park, Hong-Hyun (Crop protection Division, Department of Crop Life Safety, National Academy of Agricultural Science) ;
  • Lee, Sang-Guei (Crop protection Division, Department of Crop Life Safety, National Academy of Agricultural Science)
  • 투고 : 2012.10.16
  • 심사 : 2013.03.25
  • 발행 : 2013.06.01

초록

흰등멸구, Sogatella furcifera (Horvath), 의 온도에 따른 알 및 약충 발육 기간을 $12.5{\sim}5{\pm}1^{\circ}C$범위에서 $2.5^{\circ}C$ 간격으로 10개 항온, 14:10(L:D) h 광, 상대습도 20~30% 조건에서 조사하였다. 알은 $12.5^{\circ}C$를 제외한 모든 온도 조건에서 1령으로 성공적으로 발육하였으며, $1.5^{\circ}C$에서 22.5일로 가장 길었고, $32.5^{\circ}C$에서 5.5일로 가장 짧았다. 약충은 $15{\sim}32.5^{\circ}C$ 온도범위에서 성충까지 발육 가능하였으며, 약충 전체 발육기간은 $15^{\circ}C$에서 51.9일로 가장 길었으며 온도가 증가함에 따라 짧아져 $32.5^{\circ}C$에서 9.0일로 가장 짧았다. 온도와 발육률과의 관계를 설명하기 위해 선형 및 7개의 비선형(Analytis, Briere 1, 2, Lactin 2, Logan 6, Performance, Modified Sharpe and DeMichele) 모델을 사용하여 분석하였다. 선형 모델을 이용하여 추정한 알과 약충 전기간 발육을 위한 발육영점온도는 각각 $10.2^{\circ}C$$12.3^{\circ}C$였으며 발육에 필요한 유효적산온도는 각각 122.0, 156.3 DD였다. 7가지 비선형 모델 중 Briere 1 모델이 모든 발육단계에서 온도와 발육률과의 관계를 가장 잘 설명하였다($r^2$= 0.88~0.99). 알 및 유충의 발육단계별 발육완료 분포는 사용된 3가지 비선형(2-parameter, 3-parameter Weibull, Logistic) 모델 모두 2령과 5령을 제외한 발육단계에서는 비교적 높은 $r^2$(0.91~0.96) 값을 보여 양호한 모형 적합성을 보였다.

The developmental times of the immature stages of Sogatella furcifera (Horvath) were investigated at ten constant temperatures (12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, $35{\pm}1^{\circ}C$), 20~30% RH, and a photoperiod of 14:10 (L:D) h. Eggs were successfully developed on each tested temperature regimes except $12.5^{\circ}C$ and its developmental time was longest at $15^{\circ}C$ (22.5 days) and shortest at $32.5^{\circ}C$ (5.5 days). Nymphs successfully developed to the adult stage from $15^{\circ}C$ to $32.5^{\circ}C$ temperature regimes. Developmental time was longest at $15^{\circ}C$ (51.9 days) and it was decreased with increasing temperature up to $32.5^{\circ}C$ (9.0 days). The relationships between developmental rate and temperature were fitted by a linear model and seven nonlinear models (Analytis, Briere 1, 2, Lactin 2, Logan 6, Performance and modified Sharpe & DeMichele). The lower threshold temperature of egg and total nymphal stage was $10.2^{\circ}C$ and $12.3^{\circ}C$ respectively. The thermal constant required to complete egg and nymphal stage were 122.0 and 156.3 DD, respectively. The Briere 1 model was best fitted ($r^2$= 0.88~0.99) for all developmental stages, among seven nonlinear models. The distribution of completion of each development stage was well described by three non-linear models (2-parameter, 3-parameter Weibull and Logistic) ($r^2$= 0.91~0.96) except second and fifth instar.

키워드

참고문헌

  1. Analytis, S., 1981. Relationship between temperature and development times in phytopathogenic fungus and in plant pests: a mathematical model. Agric. Res. (Athens). 5, 133-159.
  2. Briere, J.F., Pracros, P., Le Roux, A.Y., Pierre, J.S., 1999. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22-29. https://doi.org/10.1093/ee/28.1.22
  3. Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., Markauer, M., 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11, 431-438. https://doi.org/10.2307/2402197
  4. Curry, G.L., Feldman, R.M., Smith, K.C., 1978a. A stochasitc model of a temperature-dependent population. J. Theor. Pop. Biol. 13, 197-213. https://doi.org/10.1016/0040-5809(78)90042-4
  5. Curry, G.L., Feldman, R.M., Sharpe, P.J.H., 1978b. Foundation of stochastic development. J. Theor. Biol. 74, 397-410. https://doi.org/10.1016/0022-5193(78)90222-9
  6. Hirao, J., 1972. Bionomics of two injurious planthoppers in a paddy field and suitable timing of insecticide application. Bull. Chugoku Natl. Agr. Exp. Stn. Series E. 7, 19-49.
  7. Huey, R.B., Stevenson, R.D., 1979. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am. Zool. 19, 357-366. https://doi.org/10.1093/icb/19.1.357
  8. Kisimoto, R., 1971. Long distance migration of planthoppers, Sogatella furcifera and Nilaparvata lugens. Symp. Rice Insects Trop. Agri. Ser. 5, 201-216.
  9. Lactin, D.J., Holliday, N.J., Johnson, D.L., Craigen, R., 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68-75. https://doi.org/10.1093/ee/24.1.68
  10. Logan, J.A., Wolkind, D.J., Hoyt, S.C., Tanigoshi, L.K.,. 1976. An analytical model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5, 1133-1140. https://doi.org/10.1093/ee/5.6.1133
  11. Mochida, O., Perfect, T.J., Dyck, V.A., Mahar, M.M., 1982. The whitebacked planthoper Sogatella frucifera (Horvath) (Hom. Delphacidae), its pest status and ecology. Paper presented at the International Rice Research Conference, 8-22. Apr., Los Banos, Philippines. 71pp.
  12. Neter, J., Wasserman, W., 1974. Applied linear statistical models. Richard D. Irwin, Inc. Homewood, Illinois.
  13. Noda, H., 1989. Developmental zero and total effective temperature of three rice planthoppers (Homoptera: Delphacidae). Jpn. J. Appl. Entomol. Zool. 33, 263-266. https://doi.org/10.1303/jjaez.33.263
  14. Schoolfield, R.M., Sharpe, P.J.H., Magnuson, C.E., 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 88, 719-731. https://doi.org/10.1016/0022-5193(81)90246-0
  15. Seino, H., Shiotsuki, Y., Oya, S., Hirai, Y., 1987. Prediction of long distance migration of rice planthoppers to northern Kyushu considering low-level jet stream. J. Agric. Meteorol. 43, 203-208. https://doi.org/10.2480/agrmet.43.203
  16. Sharpe, P.J.H., DeMichele, D.W., 1977. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64, 649-670. https://doi.org/10.1016/0022-5193(77)90265-X
  17. Shi, P., Ge, F., 2010. A comparison of different thermal performance functions describing temperature-dependent development rates. J. Therm. Biol. 35, 225-231. https://doi.org/10.1016/j.jtherbio.2010.05.005
  18. Sharpe, P.J.H., Curry, G.L., DeMichele, D.W., Cole, C.L., 1977. Distribution model of organisms development times. J. Theor. Biol. 66, 21-38. https://doi.org/10.1016/0022-5193(77)90309-5
  19. Suenaga, H., 1963. Analytical studies on the ecology of two species of planthoppers, the whiteback planthopper (Sogatella furcifera Horvath) and the brown planthopper (Nilaparvata lugens Stal), with special reference to their outbreaks. Bull. Kyushu Agric. Expt. Stn. 8, 1-152.
  20. SYSTAT software inc. 2002. TableCurve 2D Automated curve fitting analysis: version 5.01. Systat software. inc. San Jose, CA.
  21. Uhm, K.B., 1991. Characteristics of phenology of and damage by the whitebacked planthopper (Sogatella furcifera Horvath) and the brown planthopper (Nilaparvata lugens Stal) in Korea. Doctoral Dissertation, Seoul National Universtiy, Korea.
  22. Wada, T., Seino, H., Ogawa, Y., Nakasuga, T., 1987. Evidence of autumn overseas migration in the rice planthoppers, Nilaparvata lugens and Sogatella furcifera analysis of light trap catches and associated weather patterns. Ecol. Entomol. 12, 321-330. https://doi.org/10.1111/j.1365-2311.1987.tb01011.x
  23. Wagner, T.L., Wu, H., Sharpe, P.J.H., Coulson, R.N., 1984. Modeling distribution of insect development time: a literature review an application of Weibull function. Ann. Entomol. Soc. Am. 77, 475-487. https://doi.org/10.1093/aesa/77.5.475

피인용 문헌

  1. Research Status and Future Subjects to Predict Pest Occurrences in Agricultural Ecosystems Under Climate Change vol.16, pp.4, 2014, https://doi.org/10.5532/KJAFM.2014.16.4.368
  2. Effect of Temperature on Hatchability of Overwintering Eggs and Nymphal Development of Pochazia shantungensis (Hemiptera: Ricaniidae) 2016, https://doi.org/10.5656/KSAE.2016.11.0.029
  3. Thermal effects on the development of Naranga aenescens Moore (Lepidoptera: Noctuidae) vol.18, pp.4, 2015, https://doi.org/10.1016/j.aspen.2015.07.016