DOI QR코드

DOI QR Code

Sequence Divergence and Phylogenetic Investigation of the Nymphalidae (Lepidoptera: Papilionoidea) Occurring in South Korea

  • Wan, Xinlong (College of Agriculture & Life Sciences, Chonnam National University) ;
  • Kim, Min Jee (College of Agriculture & Life Sciences, Chonnam National University) ;
  • Cho, Youngho (Department of Biology, Daejeon University) ;
  • Jun, Jumin (Wildlife Genetic Resources Center, National Institute of Biological Resources) ;
  • Jeong, Heon Cheon (College of Agriculture & Life Sciences, Chonnam National University) ;
  • Lee, Kwang Youll (RT Practical division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Kim, Iksoo (College of Agriculture & Life Sciences, Chonnam National University)
  • Received : 2013.05.21
  • Accepted : 2013.05.28
  • Published : 2013.07.09

Abstract

As a first step toward understanding the divergence and relationships of the Nymphalidae (Lepidoptera: Papilionoidea) occurring in South Korea, cytochrome oxidase subunit I (COI), 16S ribosomal RNA (16S rRNA), and elongation factor-$1{\alpha}$ (EF-$1{\alpha}$) that comprise 3,501-3,716 bp were either sequenced (55 species) or the sequences were obtained from GenBank (23 species). The concatenated sequence divergence of six nymphalid subfamilies ranked in the following order: Danainae (10.3%), Satyrinae (9.5%), Limenitidinae (8.0%), Apaturinae (7.0%), Nymphalinae (6.7%), and Heliconiinae (6.2%). As has been reported in previous large scale international studies, the subfamilial relationships of (((((Limenitidinae + Heliconiinae) + (Nymphalinae + Apaturinae)) + Satyrinae) + Libytheinae) + Danainae) were also confirmed, except for the switched positions between Danainae and Libytheinae, and supported all subfamilies and tribe monophylies. Unlikely consistent phylogenetic relationships among genera within the majority of tribes in Nymphalidae, a conflicting relationship within the subfamily Apaturinae was obvious, presenting Apatura as sister to either Mimathyma or (Mimathyma + (Sephisa + (Hestina + Sasakia))), and both of these relationships are unconventional. Within the subfamily Limenitidinae, the genus Neptis was consistently revealed as a paraphyletic with respect to the genus Aldania, requiring further taxonomic investigation of the genus. Although limited, current sequence information and phylogenetic relationships are expected to be helpful for further studies.

Keywords

References

  1. Ackery PR (1984) Systematic and faunistic studies on butterflies, in The Biology of Butterflies . Vane-Wright RI, Ackery PR, (eds) pp. 9-21. Academic Press, London.
  2. Ackery PR (1988) Host plants and classifications: a review of nymphalid butterflies. Bio J Linn Soc 33, 95-03. https://doi.org/10.1111/j.1095-8312.1988.tb00446.x
  3. Ackery PR, de Jong R, Vane-Wright RI (1999) The butterflies: Hedyloidea, Hesperoidea, and Papilionoidea. in Lepidoptera : Moths and Butterflies . 1. Evolution , Systematics, and Biogeography, vol. 4. Kristensen NP (ed) pp. 263-300. Walter de Gruyter, Berlin.
  4. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Auto Contr 19, 716-723. https://doi.org/10.1109/TAC.1974.1100705
  5. Campbell DL, Brower AVZ, Pierce NE (2000) Molecular evolution of the wingless gene and its implications for the phylogenetic placement of the butterfly family Riodinidae (Lepidoptera: papilionoidea). Mol Biol Evol 17, 684-696. https://doi.org/10.1093/oxfordjournals.molbev.a026347
  6. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic tool. Mol Biol Evol 17, 540-552. https://doi.org/10.1093/oxfordjournals.molbev.a026334
  7. De Jong R, Vane-Wright RI, Ackery PR (1996) The higher classification of butterflies (Lepidoptera): problems and prospects. Entomol Scand 27, 65-101. https://doi.org/10.1163/187631296X00205
  8. DeVries PJ, Kitching IJ, Van-Wright RI (1985) The systematic position of Antirrhea and Caerois , with comments on the classification of the Nymphalidae (Lepidoptera). Syst Entomol 10, 11-32. https://doi.org/10.1111/j.1365-3113.1985.tb00561.x
  9. Ehrlich PR (1958) The comparative morphology, phylogeny and higher classification of the butterflies (Lepidoptera: Papilionoidea). Kans Univ Sci Bull 39, 305-370.
  10. Ehrlich PR, Ehrlich AH (1967) The phenetic relationships of the butterflies. I. Adult taxonomy and the non-specificity hypothesis. Syst Zool 16, 301-317. https://doi.org/10.2307/2412150
  11. Freitas AVL (1999) Nymphalidae (Lepidoptera), filogenia com base em caracteres de imaturos, com experimentos de troca de plantas hospedeiras. Ph D Thesis. Universidade Estadual de Campinas, Campinas.
  12. Freitas AVL, Brown KS (2004) Phylogeny of the Nymphalidae (Lepidoptera). Syst Biol 53, 363-383. https://doi.org/10.1080/10635150490445670
  13. Guindon S, Lethiec F, Duroux P, Gascuel O (2005) PHYML Online -a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33, W557-W559. https://doi.org/10.1093/nar/gki352
  14. Hajibabaei M, Singer GAC, Hickey DA (2006) Benchmarking DNA barcodes: an assessment using available primate sequences. Genome 49, 851-854. https://doi.org/10.1139/G06-025
  15. Hassanin A (2006) Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Mol Phylogenet Evol 38, 100-116. https://doi.org/10.1016/j.ympev.2005.09.012
  16. Huang H (2003) A list of butterflies collected from Nujiang (Lou Tse Kiang) and Dulongiang, China with descriptions of new species, and revisional notes. Neue Ent Nachr 55, 3-114.
  17. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17, 754-755. https://doi.org/10.1093/bioinformatics/17.8.754
  18. Joo HZ, Kim SS, Sohn JD (1997) Butterflies of Korea in Color. Kyo-Hak Pub Co, Seoul.
  19. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30, 3059-3066. https://doi.org/10.1093/nar/gkf436
  20. Kim MI, Wan X, Kim MJ, Jeong HC, Ahn NH, Kim KG, Han YS, Kim I (2010) Phylogenetic relationships of true butterflies (Lepidoptera: Papilionoidea) inferred from COI, 16S rRNA and EF-1${\alpha}$ sequences. Mol Cells 30, 409-425. https://doi.org/10.1007/s10059-010-0141-9
  21. Kim MJ, Kang AR, Jeong HC, Kim KG, Kim I (2011) Reconstructing intraordinal relationships in Lepidoptera using mitochondrial genome data with the description of two newly sequenced lycaenids, Spindasis takanonis and Protantigius superans (Lepidoptera: Lycaenidae). Mol Phylogenet Evol 61, 436-445. https://doi.org/10.1016/j.ympev.2011.07.013
  22. Kim SS (2012) Life History of Korean Butterflies. Sakejeol, Seoul.
  23. Kim YS (2002) Illustrated Book of Korean Butterflies in Color. Kyo-Hak Pub Co, Seoul.
  24. Lanave C, Preparata G, Saccone C, Serio G (1984) A new method for calculating evolutionary substitution rates. J Mol Evol 20, 86-93. https://doi.org/10.1007/BF02101990
  25. Lee SM, Takakura T (1981) On a new subspecies of the Purple Emperor, Apatura iris (Lepidoptera: Nymphalidae) from the Republic of Korea. Tyo Ga 31, 133-141.
  26. Le Moult, E (1950) Revision de la classification des Apaturinae de l'Ancien Monde suivie d'une monographie de plusieurs genres. Miscellanea Entomol 1 (Suppl), 1-68.
  27. Martin JF, Gilles A, Descimon H (2000) Molecular phylogeny and evolutionary patterns of the European satyrids (Lepidoptera: Satyridae) as revealed by mitochondrial gene sequences. Mol Phylogenet Evol 15, 70-82. https://doi.org/10.1006/mpev.2000.0757
  28. Martin JA, Pashley DP (1992) Molecular systematic analysis of butterfly family and some subfamily relationships (Lepidoptera: Papilionoidea). Ann Entomol Soc Am 85, 127-135. https://doi.org/10.1093/aesa/85.2.127
  29. Massana R, Castresana J, Balague V, Guillou L, Romari K, Groisillier A, Valentin K, Pedros-Alio C (2004) Phylogenetic and ecological analysis of novel marine stramenopiles. Appl Environ Microbiol 70, 3528-3534. https://doi.org/10.1128/AEM.70.6.3528-3534.2004
  30. Monteiro A, Pierce NE (2001) Molecular phylogeny of Bicyclus butterflies (Satyridae) using COI, COII and EF1${\alpha}$. Mol Phylogenet Evol 18, 264-281. https://doi.org/10.1006/mpev.2000.0872
  31. Mutanen M, Wahlberg N, Kaila L (2010) Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. Proc R Soc B 277, 2839-2848. https://doi.org/10.1098/rspb.2010.0392
  32. Niehuis O, Yen SH, Naumann CM, Misof B (2006) Higher phylogeny of zygaenid moths (Insecta: Lepidoptera) inferred from nuclear and mitochondrial sequence data and the evolution of larval cuticular cavities for chemical defence. Mol Phylogenet Evol 39, 812-829. https://doi.org/10.1016/j.ympev.2006.01.007
  33. Nylin S, Nyblom K, Ronquist F, Janz N, Belicek J, Kallersjo M (2001) Phylogeny of Polygonia, Nymphalis and related butterflies (Lepidoptera: Nymphalidae): a total-evidence analysis. Zool J Linn Soc 132, 441-468. https://doi.org/10.1111/j.1096-3642.2001.tb02470.x
  34. Ohshima I, Tanikawa-Dodo Y, Saigusa T, Nishiyama T, Kitani M, Hasebe M, Mohri H (2010) Phylogeny, biogeography, and hostplant association in the subfamily Apaturinae (Insecta: Lepidoptera: Nymphalidae) inferred from eight nuclear and seven mitochondrial genes. Mol Phylogenet Evol 57, 1026-1036. https://doi.org/10.1016/j.ympev.2010.09.018
  35. Park K-T (1987) Two Species of Gelechiidae (Lepidoptera) New to Korea. Korean J Entomol 17, 175-178.
  36. Pena C, Nylin S, Wahlberg N (2011) The radiation of Satyrini butterflies (Nymphalidae: Satyrinae): a challenge for phylogenetic methods. Zool J Linn Soc 161, 64-87. https://doi.org/10.1111/j.1096-3642.2009.00627.x
  37. Posada D, Crandal KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817-818. https://doi.org/10.1093/bioinformatics/14.9.817
  38. Regier JC, Zwick A, Cummings MP, Kawahara AY, Cho S, Weller S, Roe A, Baixeras J, Brown JW, Parr C, Davis DR, Epstein M, Hallwachs Hausmann A, Janzen DH, Kitching IJ, Solis MA, Yen S-H, Bazinet al , Mitter C (2009) Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study. BMC Evol Biol 9, 280. https://doi.org/10.1186/1471-2148-9-280
  39. Robbins RK (1988) Comparative morphology of the butterfly foreleg coxa and trocanter (Lepidoptera) and its systematic implications. Proc Entomol Soc Wash 90, 133-154.
  40. Savard J, Tautz D, Richards S, Weinstock GM, Gibbs RA, Werren JH, Tettelin H, Lercher MJ (2006) Phylogenomic analysis reveals bees and wasps (Hymenoptera) at the base of the radiation of Holometabolous insects. Genome Res 16, 1334-1338. https://doi.org/10.1101/gr.5204306
  41. Scott JA (1984) The phylogeny of butterflies (Papilionoidea and Hesperioidea). J Res Lepid 23, 241-281.
  42. Shirozu T, Saigusa T (1971) A new genus of the subfamily Apaturinae (Nymphalidae). Trans Lepid Soc Jpn 22, 7-13.
  43. Simonsen TJ (2006) Fritillary phylogeny, classification, and larval host plants: reconstructed mainly on the basis of male and female genitalic morphology (Lepidoptera: Nymphalidae: Argynnini). Biol J Linn Soc 89, 627-673. https://doi.org/10.1111/j.1095-8312.2006.00697.x
  44. Simonsen TJ, Wahlberg N, Brower AVZ, de Jong R (2006) Morphology, molecules and fritillaries: approaching a stable phylogeny of Argynnini (Lepidoptera: Nymphalidae). Insect Syst Evol 37, 405-418. https://doi.org/10.1163/187631206788831407
  45. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis (MEGA) using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731-2739. https://doi.org/10.1093/molbev/msr121
  46. Tuzov VK, Bogdanov PV, Devyatkin AL, Kaabak LV, Korolev VA, Murzin VS, Samodurov GD, Tarasov EA (1997) Guide to the butterflies of Russia and adjacent territories (Lepidoptera, Rhopalocera). Pensoft, Sofia.
  47. Vane-Wright RI (2003) Evidence and identity in butterfly systematic, in Butterflies: Ecology and evolution taking flight . Boggs CL, Watt WB, Ehrlich PR (eds) pp. 477-513. U Chicago Press, Chicago.
  48. Wahlberg N, Braby MF, Brower AVZ, de Jong R, Lee M-M, Nylin S, Pierce NE, Sperling FAH, Vila R, Warren AD, Zakharov E (2005) Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proc R Soc B 272, 1577-1586. https://doi.org/10.1098/rspb.2005.3124
  49. Wahlberg N, Leneveu J, Kodandaramaiah U, Pena C, Nylin S, Freitas AVL, Brower AVZ (2009) Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proc Roy Soc B 272, 1577-1586.
  50. Wahlberg N, Weingartner E, Nylin S (2003) Towards a better understanding of the higher systematic of Nymphalidae (Lepidoptera: Papilionidea). Mol Phylogenet Evol 28, 473-484. https://doi.org/10.1016/S1055-7903(03)00052-6
  51. Wahlberg N, Zimmermann M (2000) Pattern of phylogenetic relationships among members of the tribe Melitaeini (Lepidoptera: Nymphalidae) inferred from mtDNA sequences. Cladistics 16, 347-363. https://doi.org/10.1111/j.1096-0031.2000.tb00355.x
  52. Wu D, Hao J, Zhu G, Chen N, Su C, Pan H, Zhang X (2007) Phylogenetic relationships of butterflies in the subfamily Limenitinae based on mitochondrial Cytochrome b gene sequences. Zool Res 28, 1-8.
  53. Yuan F, Wang YL (1994) New species, new susbspecies and new status of the genus Neptis from China. Entomotaxonomia 16, 115-119.
  54. Zhang M, Cao T, Jin K, Ren Z, Guo Y, Shi J, Zhang Y, Ma E (2008) Estimating divergence times among subfamilies in Nymphalidae. Chinese Sci Bull 53, 2652-2658. https://doi.org/10.1007/s11434-008-0344-z
  55. Zhang M, Cao T, Zhang Y, Guo Y, Ma E (2011) Phylogeny of Limenitidinae butterflies (Lepidoptera: Nymphalidae) inferred from mitochondrial cytochrome oxidase I gene sequences. Agri Sci China 10, 566-575. https://doi.org/10.1016/S1671-2927(11)60038-2

Cited by

  1. DNA data and morphology reveal the existence ofKentrochrysalis streckeriStaudinger, 1880 (Lepidoptera: Sphingidae) instead ofK. consimilisin South Korea vol.46, pp.3, 2016, https://doi.org/10.1111/1748-5967.12167
  2. Phylogenetic utility of ribosomal genes for reconstructing the phylogeny of five Chinese satyrine tribes (Lepidoptera, Nymphalidae) vol.488, 2015, https://doi.org/10.3897/zookeys.488.9171
  3. Phylogenetic position and taxonomic rearrangement of Davidina (Lepidoptera: Nymphalidae), an enigmatic butterfly genus new for Europe and America vol.190, pp.3, 2020, https://doi.org/10.1093/zoolinnean/zlaa104