DOI QR코드

DOI QR Code

스프레이 코팅법으로 제조된 CNT/PVDF 압전 복합막의 자기분극 메커니즘

Self-poling Mechanism of CNT/PVDF Piezoelectric Composite Films Prepared by Spray Coating Method

  • 이선우 (인하공업전문대학 전기정보과)
  • Lee, Sunwoo (Department of Electrical Information, Inha Technical College)
  • 투고 : 2013.06.11
  • 심사 : 2013.06.24
  • 발행 : 2013.07.01

초록

Carbon nanotubes (CNT) / polyvinylidene fluoride (PVDF) piezoelectric composite films for nanogenerator devices were fabricated by spray coating method. When the CNT/PVDF mixture solution passes through the spray nozzle with small diameter by the compressed nitrogen gas, electric charges are generated in the liquid by a triboelectric effect. Then randomly distributed ${\beta}$ phase PVDF film could be re-oriented by the electric field resulting from the accumulated electrical charges, and might be resulted in extremely one-directionally aligned ${\beta}$ phase PVDF film without additional electric field for poling. X-ray diffraction patterns were used to investigate crystal structure of the CNT/PVDF composite films. It was confirmed that they revealed extremely large portion of the ${\beta}$ phase PVDF crystalline in the film. Therefore we could obtain the poled CNT/PVDF piezoelectric composite films by the spray coating method without additional poling process.

키워드

참고문헌

  1. R. Yang, Y. Qin, C. Li, G. Zhu, and Z. L. Wang, Nano Lett., 9, 1201 (2009). https://doi.org/10.1021/nl803904b
  2. X. Chen, S. Xu, N. Yao, and Y. Shi, Nano Lett., 10, 2133 (2010). https://doi.org/10.1021/nl100812k
  3. Y. Hu, C. Xu, Y. Zhang, L. Lin, R. L. Snyder, and Z. L. Wang, Adv. Mater., 23, 4068 (2011). https://doi.org/10.1002/adma.201102067
  4. A. M. Vinogradov, V. H. Schmidt, G. F. Tuthill, and G. W. Bohannan, Mech. Mater., 36, 1007 (2004). https://doi.org/10.1016/j.mechmat.2003.04.002
  5. W. Ma, J. Zhang, S. Chen, and X. Wang, J. Macromol. Sci. Phys., B47, 434 (2008).
  6. B. Mohammadi, A. A. Yousefi, and S. M. Bellah, Polym. Test., 26, 42 (2007). https://doi.org/10.1016/j.polymertesting.2006.08.003
  7. K. Balasubramanian and M. Burghard, Small, 1, 180 (2005). https://doi.org/10.1002/smll.200400118
  8. R. Khare and S. Bose, Journal of Minerals & Materials Characterization & Engineering, 4, 31 (2005). https://doi.org/10.4236/jmmce.2005.41004
  9. S. A. C. Carabineiro, M. F. R. Pereira, J. N. Pereira, C. Caparros, V. Sencadas, and S. Lanceros-Mendez, Nanoscale Res. Lett., 6, 1 (2011).
  10. E. El Shafee, M. El Gamal, and M. Isa, J. Polym. Res., 19, 1 (2012). https://doi.org/10.1007/s10965-012-0001-8
  11. N. Levi, R. Czerw, S. Y. Xing, P. Lyer, and D. L. Carroll, Nano Lett., 4, 1267 (2004). https://doi.org/10.1021/nl0494203
  12. M. ElAchaby, F. Z. Arrakhiz, S. Vaudreuil, E. M. Essassi, and A. Qaiss, Appl. Surf. Sci., 258, 7668 (2012). https://doi.org/10.1016/j.apsusc.2012.04.118
  13. H. P. Srivastava, G. Arthanareeswaran, N. Anantharaman, and Victor M. Starov, Desalination, 283, 169 (2011). https://doi.org/10.1016/j.desal.2011.02.042
  14. W. M. Bustin and W. G. Dukek, Electrostatic Hazards in the Petroleum Industry (Letchworth, Research Studies Press, 1983).