References
- Arnold, W.A. and Roberts, A.L., 2000, Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe (0) particles, Environ. Sci. Technol., 34(9), 1794-1805. https://doi.org/10.1021/es990884q
- Berge, N.D. and Ramsburg, C.A., 2009, Oil-in-water emulsions for encapsulated delivery of reactive iron particles, Environ. Sci. Technol., 43(13), 5060-5066. https://doi.org/10.1021/es900358p
- Crane, R. and Scott, T., 2012, Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology, J. Hazard. Mater., 211-212, 112-115. https://doi.org/10.1016/j.jhazmat.2011.11.073
- Elliott, D.W. and Zhang, W., 2001, Field assessment of nanoscale bimetallic particles for groundwater treatment, Environ. Sci. Technol., 35(24), 4922-4926. https://doi.org/10.1021/es0108584
- EPA, 2011, Toxicological Review of Trichloroethylene
- Gelhar, L.W., Welty, C., and Rehfeldt, K.R., 1992, A critical review of data on field-scale dispersion in aquifers, Water Resour. Res., 28(7), 1955-1974. https://doi.org/10.1029/92WR00607
- Hara, S.O., Krug, T., Quinn, J., Clausen, C., and Geiger, C., 2006, Field and laboratory evaluation of the treatment of DNAPL source zones using emulsified zerovalent iron, Remediation Journal, 16(2), 35-56. https://doi.org/10.1002/rem.20080
- He, F., Zhang, M., Qian, T., and Zhao, D., 2009, Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: Column experiments and modeling, J. Colloid Interface Sci., 334(1), 96-102. https://doi.org/10.1016/j.jcis.2009.02.058
- He, F., Zhao, D., Liu, J., and Roberts, C.B., 2007, Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater, Ind. Eng. Chem. Res., 46(1), 29-34. https://doi.org/10.1021/ie0610896
- Hong, Y., Honda, R.J., Myung, N.V., and Walker, S.L., 2009, Transport of iron-based nanoparticles: role of magnetic properties, Environ. Sci. Technol., 43(23), 8834-8839. https://doi.org/10.1021/es9015525
- Jiemvarangkul, P., Zhang, W., and Lien, H., 2011, Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media, Chem. Eng. J., 170(2), 482-491. https://doi.org/10.1016/j.cej.2011.02.065
- Johnson, R.L., Nurmi, J.T., O'Brien Johnson, G.S., Fan, D., O'Brien Johnson, R.L., Shi, Z., Salter-Blanc, A.J., Tratnyek, P.G., and Lowry, G.V., 2013, Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron, Environ. Sci. Technol., 47(3), 1573-1580. https://doi.org/10.1021/es304564q
- Kanel, S., Goswami, R., Clement, T., Barnett, M., and Zhao, D., 2007, Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media, Environ. Sci. Technol., 42(3), 896-900.
- Kim, T., Kim, H., Lee, J., Cheon, J., Lee, K., and Hwang, I., 2011, Effects of Dissolved Compounds in Groundwater on TCE Degradations Reaction by Nanoscale Zero-Valent Iron, Journal of KSEE, 33(6), 413-419. https://doi.org/10.4491/KSEE.2011.33.6.413
- Klimkova, S., Cernik, M., Lacinova, L., Filip, J., Jancik, D., and Zboril, R., 2011, Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching, Chemosphere, 82(8), 1178-1184. https://doi.org/10.1016/j.chemosphere.2010.11.075
- Kocur, C.M., O'Carroll, D.M. and Sleep, B.E., 2012, Impact of nZVI stability on mobility in porous media, J. Contam. Hydrol., 145, 17-25.
- Korean Ministry of Environment, 2012, Operating report of groundwater monitoring system in 2011.
- Le, D.T., 2012, Mobility of organic-coated nanoscale zero valent iron particles in aquifer media, master dissertation, Pusan National University, Busan, Korea
- MacDonald, J.A. and Kavanaugh, M.C., 1994, Restoring contaminated groundwater: an achievable goal?, Environ. Sci. Technol., 28(8), 362A-368A.
- O'Carroll, D., Sleep, B., Krol, M., Boparai, H., and Kocur, C., 2012, Nanoscale zero valent iron and bimetallic particles for contaminated site remediation, Adv. Water Resour., 51, 104-122.
- Phenrat, T., Saleh, N., Sirk, K., Tilton, R.D., and Lowry, G.V., 2007, Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions, Environ. Sci. Technol., 41(1), 284-290. https://doi.org/10.1021/es061349a
- Priddle, M. and Jackson, R., 1991, Laboratory column measurement of VOC retardation factors and comparison with field values, Groundwater, 29(2), 260-266. https://doi.org/10.1111/j.1745-6584.1991.tb00518.x
- Roberts, P.V., McCarty, P.L., Reinhard, M., and Schreiner, J., 1980, Organic contaminant behavior during groundwater recharge, Journal (Water Pollution Control Federation), 52(1), 161-172.
- Sakulchaicharoen, N., O'Carroll, D.M., and Herrera, J.E., 2010, Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles, J. Contam. Hydrol., 118(3), 117-127. https://doi.org/10.1016/j.jconhyd.2010.09.004
- Saleh, N., Kim, H., Phenrat, T., Matyjaszewski, K., Tilton, R.D., and Lowry, G.V., 2008, Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns, Environ. Sci. Technol., 42(9), 3349-3355. https://doi.org/10.1021/es071936b
- Sauty, J., Kinzelbach, W., and Voss, A., 1992, CATTI: computer aided tracer test interpretation, BRGM, Orlans.
- Schrick, B., Hydutsky, B.W., Blough, J.L., and Mallouk, T.E., 2004, Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater, Chemistry of Materials, 16(11), 2187-2193. https://doi.org/10.1021/cm0218108
- Tufenkji, N. and Elimelech, M., 2004, Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media, Environ. Sci. Technol., 38(2), 529-536. https://doi.org/10.1021/es034049r
- Wei, Y., Wu, S., Chou, C., Che, C., Tsai, S., and Lien, H., 2010, Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study, Water Res., 44(1), 131-140. https://doi.org/10.1016/j.watres.2009.09.012
- Yang, G.C., Tu, H., and Hung, C., 2007, Stability of nanoiron slurries and their transport in the subsurface environment, Separation and Purification Technology, 58(1), 166-172. https://doi.org/10.1016/j.seppur.2007.07.018
Cited by
- Field Study on Application of Reactive Zone Technology Using Zero-Valent Iron Nanoparticles for Remediation of TCE-Contaminated Groundwater vol.19, pp.6, 2014, https://doi.org/10.7857/JSGE.2014.19.6.080
- Effects of oxidants on in situ treatment of a DNAPL source by nanoscale zero-valent iron: A field study vol.107, 2016, https://doi.org/10.1016/j.watres.2016.10.037