DOI QR코드

DOI QR Code

A Review on Identification Methods for TCE Contamination Sources using Stable Isotope Compositions

안정동위원소 조성을 이용한 TCE 오염원 규명방법 소개

  • Park, Youngyun (Department of Geology, Kangwon National University) ;
  • Lee, Jin-Yong (Department of Geology, Kangwon National University) ;
  • Na, Won Jong (Department of Soil & Groundwater, Korea Environment Corporation) ;
  • Kim, Rak-Hyeon (Department of Soil & Groundwater, Korea Environment Corporation) ;
  • Choi, Pil Sung (Department of Soil & Groundwater, Korea Environment Corporation) ;
  • Jun, Seong-Chun (GeoGreen21 Co., Ltd.)
  • Received : 2013.02.07
  • Accepted : 2013.06.18
  • Published : 2013.06.30

Abstract

This study was performed to summarize application of ${\delta}^{13}C$, ${\delta}^{37}Cl$ and ${\delta}D$ of trichloroethylene (TCE) to studies on environmental forensic field regarding identification of TCE sources and evaluation of contribution of TCE to groundwater using data collected from literatures. ${\delta}^{13}C$, ${\delta}^{37}Cl$ and ${\delta}D$ of TCE give some information regarding sources of TCE because they show specific value according to manufacturing method. Also, TCE do not show a significant isotopic fractionation owing to adsorption and dilution. The isotopic fractionation mainly occurs by biodegradation. In addition, isotopic fractionation factor for TCE is different according to a kind of microorganism participated in biodegradation. However, the isotopic data of TCE have to be applied with chemical compositions of TCE and other hydrogeologic factors because isotopic fractionation of TCE is influenced by various factors.

Keywords

References

  1. Beneteau, K.M., Aravena, R., and Frape, S.K., 1999, Isotope characterization of chlorinated solvents-laboratory and field results, Org. Geochem., 30, 739-753. https://doi.org/10.1016/S0146-6380(99)00057-1
  2. Bloom, Y., Aravena, R., Hunkeler, D., Edwards, E., and Frape, S.K., 2000, Carbon isotope fractionation during microbial dechlorination of trichloroethene, cis-dichloroethene, and vinyl chloride: implications for assessment of natural attenuation, Environ. Sci. Technol., 34, 2768-2772. https://doi.org/10.1021/es991179k
  3. Cho, H.Y., Cho, S.H., Ryoo, J.J., Kim, B.G., Park, S.H., and Kang, S.K., 2007, A survey on the status of using trichloroethylene (TCE) in Korea, J. Korean Soc. Occup. Hyg., 17, 254-260.
  4. Cichocka, D., Imfeld, G., Richnow, H.H., and Nijenhuis, I., 2008, Variability in microbial carbon isotope fractionation of tetra- and trichloroethene upon reductive dechlorination, Chemosphere, 71, 639-648. https://doi.org/10.1016/j.chemosphere.2007.11.013
  5. Cichocka, D., Siegert, M., Imfeld, G., Andert, J., Beck, K., Diekert, G., Richnow, H.H., and Nijenhuis, I., 2007, Factors controlling the carbon isotope fractionation of tetra- and trichloroethene during reductive dechlorination by Sulfurospirillum spp. and Desulfitobacterium sp. strain PCE-S, FEMS Microbiol. Ecol., 62, 98-107. https://doi.org/10.1111/j.1574-6941.2007.00367.x
  6. Dawson, H. and Roberts, P., 1997, Influence of viscous, gravitational and capillary forces on DNAPL saturation, Ground Water, 35, 261-269. https://doi.org/10.1111/j.1745-6584.1997.tb00083.x
  7. Eastoe, C.J. and Guilbert, J.M., 1992, Stable chlorine isotopes in hydrothermal processes, Goechim. Cosmochim, Acta, 56, 4247-4255. https://doi.org/10.1016/0016-7037(92)90265-K
  8. Ferguson, J.F. and Pietari, J.M.H., 2000, Anaerobic transformations and bioremediation of chlorinated solvents, Environ. Pollut., 107, 209-215. https://doi.org/10.1016/S0269-7491(99)00139-6
  9. Hilfiker, S., 2005, Forensic environmental investigations, Florida's 8th annual statewide conference, Florida Brownfields Association, Florida, USA, p. 1-42.
  10. Huling, S. and Weaver, J., 1991. Dense nonaqueous phase liquids, U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, D.C., p. 21.
  11. Hunkeler, D., Aravena, R., and Butler, B.J., 1999, Monitoring microbial dechlorination of tetrachloroethene (PCE) in groundwater using compound-specific stable carbon isotope ratios: microcosm and field studies, Environ. Sci. Technol., 33, 2733-2738. https://doi.org/10.1021/es981282u
  12. Hunkeler, D., Chollet, N., Pittet, X., Aravena, R., Cherry, J.A., and Parker, B.L., 2004, Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers, J. Contaminant Hydrol., 74, 265-282. https://doi.org/10.1016/j.jconhyd.2004.03.003
  13. Jendrzejewski, N., Eggenkamp, H.G.M., and Coleman, M.L., 1997, Sequential determination of chlorine and carbon isotopic composition in single microliter samples of chlorinated solvent, Anal. Chem., 69, 4259-4266. https://doi.org/10.1021/ac970447z
  14. Jendrzejewski, N., Eggenkamp, H.G.M., and Coleman, M.L., 2001, Characterization of chlorinated hydrocarbons from chlorine and carbon isotopic compositions: scope of application to environmental problems, Appl. Geochem., 16, 1021-1031. https://doi.org/10.1016/S0883-2927(00)00083-4
  15. Jo, Y.J., Lee, J.Y., Yi, M.J., Kim, H.S., and Lee, K.K., 2010, Soil contaminations with TCE in industrial complex: contamination levels and implication for groundwater contamination, Geosci. J., 14. 313-320. https://doi.org/10.1007/s12303-010-0022-4
  16. Kim, J.H. and Yi, J., 1998, Simulation of DNAPL and LNAPL transport phenomena in unsaturated zone and saturated zone, J. Korean Inst. Chem. Eng., 36, 846-855.
  17. Kim, Y., Kim, J., Ha, C., Kim, N., Hong, K., Kwon, S.Y., Ahn, Y.H., Ha. J., and Park, H., 2005, Field tests for assessing the bioremediation feasibility of a trichloroethylene-contaminated aquifer, J. Soil &Groundwater Env., 10, 38-45.
  18. Kueper, B., Abbot, W., and Garquhar, G., 1989, Experimental observations of multiphase flow in heterogeneous porous media, J. Contaminant Hydrol., 5, 83-95. https://doi.org/10.1016/0169-7722(89)90007-7
  19. Lee, H.B., Yeo, I.W., Ji, S.H., and Lee, K.K., 2011, A capillary number for physical displacement of TCE-DNAPL trapped in a rough-welled fracture, Geosci. J., 15, 305-311. https://doi.org/10.1007/s12303-011-0028-6
  20. Lee, J.Y., 2007, A review on forensic investigations for tracing contamination sources of petroleum hydrocarbons. J. Geol. Soc. Korea, 43, 369-380.
  21. Lee, P.K.H., Conrad, M.E., and Alvarez-Cohen, L., 2007, Stable carbon isotope fractionation of chloroethenes by dehalore spiring isolates, Environ. Sci. Technol., 41, 4277-4285. https://doi.org/10.1021/es062763d
  22. Morrison, R.D., 2000, Environmental Forensics, CRC Press, Boca Raton, 351 p.
  23. Nijenhuis, I., Andert, J., Beck, K., Kastner, M., Diekert, G., and Richnow, H.H., 2005, Stable isotope fractionation of tetrachloroethene during reductive dechlorination by Sulfurospirillum multivorans and Desulfitobacterium sp. strain PCE-S and abiotic reactions with cyanocobalamin, Appl. Environ. Mjcrobiol., 71, 3413-3419. https://doi.org/10.1128/AEM.71.7.3413-3419.2005
  24. Nijenhuis, I., Nikolausz, M., Koth, A., Felfoldi, T., Weiss, H., Drangmeister, J., Grossmann, J., Kastner, M., and Richnow, H.H., 2007, Assessment of th natural attenuation of chlorinated ethenes in an anaerobic contaminated aquifer in the Bitterfeld/ Wolfen area using stable isotope techniques, microcosm studies and molecular biomarkers, Chemosphere, 67, 300-311. https://doi.org/10.1016/j.chemosphere.2006.09.084
  25. Odencrantz, J., Farr, J., and Robinson, C., 1992, Transport model parameter sensitivity for soil clean-up level determinations using SEOIL and AT123D in the context of the California leaking underground fuel tank field manual, J. Soil Contamination, 1, 159-182. https://doi.org/10.1080/15320389209383408
  26. Olson, R. and Davis, A., 1990, Predicting the fate and transport of organic compounds in groundwater, Hazardous Material Control, 3, 39-64.
  27. Pankow, J. and Cherry, J., 1996, Dense chlorinated solvents and other DNAPLs in groundwater, Waterloo Press, Guelph, Ontario, 522 p.
  28. Ramamoorthy, S. and Ramamoorthy, S., 1998, Chlorinated orgainc compounds in the environment: regulatory and monitoring assessment, Lweis Publisher, Boca Ration, FL, 370 p.
  29. Schuth, C., Taubald, H., Bolano, N., and Maciejczyk, K., 2003, Carbon and hydrogen isotope effects during sorption of organic contaminants on carbonaceous materials, J. Contaminant Hydrol., 64, 269-281. https://doi.org/10.1016/S0169-7722(02)00216-4
  30. Shouakar-Stash, O., Drimmie, R., Morrison, J., Frape, S.K., Heemskerk, A.R., and Mark, W.A., 2000, On-line D/H analysis for water, natural gas, and organic solvents by manganese reduction, Anal. Chem., 72, 2664-2666. https://doi.org/10.1021/ac991384i
  31. Shouakar-Stash, O., Frape, S.K., and Drimmie, R.J., 2003, Stable hydrogen, carbon and chlorine isotope measurements of selected chlorinated organic solvents, J. Contaminant Hydrol., 60, 211-228. https://doi.org/10.1016/S0169-7722(02)00085-2
  32. Slater, G.F., Lollar, B.S., Sleep, B.E., and Edwards, E.A., 2001, Variability in carbon isotopic fractionation during biodegradation of chlorinated ethenes: implications for field applications, Environ. Sci. Technol., 35, 901-907. https://doi.org/10.1021/es001583f
  33. Smith, J.G. and Wang, Y., 2010, Use of stable isotope to aid site remediation, Environ. Trends Technol., 3-6.
  34. Tanaka, N. and Rye, D., 1991, Chlorine in the stratosphere, Nature, 23, 707.
  35. U.S. EPA, 1999, Monitored natural attenuation of chlorinated solvents. EPA/600/F-98/022
  36. van Warmerdam, E.M., Frape, S.K., Aravena, R., Drimmie, R.J., Flatt, H., and Cherry, J.A., 1995, Stable chlorine and carbon isotope measurement of selected chlorinated organic solvents, Appl. Geochem., 10, 547-552. https://doi.org/10.1016/0883-2927(95)00025-9
  37. Yang, J.H. and Lee, K.K., 2012, Locating plume sources of multiple chlorinated contaminants in groundwater by analyzing seasonal hydrological responses in an industrial complex, Wonju, Korea, Geosci, J., 16, 301-311. https://doi.org/10.1007/s12303-012-0028-1
  38. Zwank, L., 2004, Assessment of the fate of organic groundwater contaminants using their isotope signatures. Ph.D. thesis, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland, 161 p.

Cited by

  1. Use of environmental and applied tracers for groundwater studies in Korea vol.18, pp.1, 2014, https://doi.org/10.1007/s12303-013-0050-y