DOI QR코드

DOI QR Code

Preparation of Coil-Embolic Material Using Syndiotactic Poly(vinyl alcohol) Gel Spun Fibers

교대배열 PVA 젤 섬유를 이용한 고분자 색전 코일 제조

  • Seo, Young Ho (Department of Nano, Medical and Polymer Materials, Yeungnam University) ;
  • Oh, Tae Hwan (Department of Nano, Medical and Polymer Materials, Yeungnam University) ;
  • Han, Sung Soo (Department of Nano, Medical and Polymer Materials, Yeungnam University) ;
  • Joo, Sang Woo (School of Mechanical Engineering, Yeungnam University) ;
  • Khil, Myeong Seob (Department of Organic Materials and Fiber Engineering, Chonbuk National University)
  • 서영호 (영남대학교 나노메디컬유기재료공학과) ;
  • 오태환 (영남대학교 나노메디컬유기재료공학과) ;
  • 한성수 (영남대학교 나노메디컬유기재료공학과) ;
  • 주상우 (영남대학교 기계공학부) ;
  • 길명섭 (전북대학교 유기소재파이버공학과)
  • Received : 2013.02.06
  • Accepted : 2013.04.29
  • Published : 2013.07.25

Abstract

The structure, morphology, and physical properties of syndiotatic poly(vinyl alcohol) (s-PVA) gel spun fibers were investigated to prepare polymeric embolization coils. S-PVA was prepared by saponification of the poly(vinyl acetate)/poly(vinyl pivalate)(PVAc/PVPi) copolymer. The viscosity of s-PVA solutions showed shear thinning behavior and the solution formed a homogeneous phase. Based on shear viscosity change with concentration, the optimum dope concentration was selected as 13 wt%, after which s-PVA fibers were spun and the solvent was removed. The fibers were then drawn with a maximum draw ratio of 15. A polymeric embolization coil was made of the s-PVA gel-spun fibers. The fibers were wound densely onto rigid rod and then annealed at different annealing temperatures. The polymeric embolization coil annealed at $200^{\circ}C$ was similar to metallic coils and its shape was maintained well after extension. Overall, gel-spun PVA fibers performed well for the preparation of primary and secondary coils to replace metallic coils.

고분자 색전 코일을 제조하기 위하여 교대배열 PVA(s-PVA) 용액을 제조하고 젤방사 조건의 최적화를 위해 고분자용액의 유변학적 특성을 분석하였다. 현탁중합을 통해 비누화도 99%, 교대배열기 함량 56%인 s-PVA를 제조하였고 고분자 용액의 농도에 따른 점도 변화 측정을 통해 최적의 방사농도를 13 wt%로 선정하였다. S-PVA 젤 섬유의 연신비에 따른 구조, 형태, 인장 특성을 측정하였다. S-PVA 젤 섬유의 연신비가 증가함에 따라 인장강도가 증가하였고, 최대 연신비인 15배 연신하였을 때 인장강도는 580 MPa이었고 절단신도는 연신비가 증가함에 따라 감소하는 경향을 나타냈다. S-PVA 젤 섬유는 연신비에 따라 결정구조가 발달하고 배향도가 증가하는 경향을 나타내었다. 색전 코일 제조 시의 열처리온도에 따른 코일의 형태 안정성을 살펴 본 결과 열처리온도가 높을수록 코일의 형태안정성이 우수하였으며 금속 색전 코일로 제조되는 1차 코일 및 2차 코일 형태를 s-PVA 섬유를 이용해 제조하였고 이를 통해 금속 색전 코일의 고분자로의 대체 가능성을 확인하였다.

Keywords

References

  1. K. T. Brown, L. A. Brody, D. R. Decorato, and G. I. Getrajdman, J. Vasc. Interv. Radiol., 12, 882 (2001). https://doi.org/10.1016/S1051-0443(07)61515-2
  2. Y. Ito, H. Hasuda, M. Kamitakahara, C. Ohtsuki, M. Tanihara, I. K. Kang, and O. H. Kwon, J. Biosci. Bioeng., 100, 43 (2005). https://doi.org/10.1263/jbb.100.43
  3. H. Staudinger, K. Frey, and W. Stark, Ber. Dtsch. Chem. Ges., 60, 1782 (1927). https://doi.org/10.1002/cber.19270600811
  4. S. J. Bryant, C. R. Nettelman, and K. S. Anseth, Biomed. Sci. Instrum., 35, 309 (1999).
  5. I. Rehman and W. Bonfield, J. Mater. Sci.: Mater. Med., 8, 1 (1999).
  6. Y. Aldenhoff, M. Kruft, P. Pijpers, F. H. Veen, S. K. Bulstra, R. Kuijer, and L. H. Koole, Biomaterials, 23, 881 (2002). https://doi.org/10.1016/S0142-9612(01)00197-1
  7. M. J. Dalby, L. Di Silvio, N. Gurav, B. Annaz, M. V. Kayser, and W. Bonfield, Tissue Eng., 8, 453 (2002). https://doi.org/10.1089/107632702760184718
  8. T. Nakano, Y. H. Uasa, and Y. Kanaya, Pharm. Res., 16, 1616 (1999). https://doi.org/10.1023/A:1018921108172
  9. K. Kato, Y. Eika, and Y. Ikada, J. Biomed. Mater. Res., 32, 687 (1996). https://doi.org/10.1002/(SICI)1097-4636(199612)32:4<687::AID-JBM23>3.0.CO;2-9
  10. T. Serizawa, T. Tateishi, and M. Akashi, J. Biomater. Sci. Polym. Ed., 14, 653 (2003). https://doi.org/10.1163/156856203322274914
  11. K. H. Schmidt, R. Patel, and D. Meisel, J. Am. Chem. Soc., 110, 4882 (1988) https://doi.org/10.1021/ja00223a002
  12. H. Tamai, H. Sakurai, T. Suzawa, and H. Yasuda, J. Appl. Polym. Sci., 51, 1277 (1994). https://doi.org/10.1002/app.1994.070510714
  13. A. Luzar and D. Chandler, J. Chem. Phys., 98, 8160 (1993). https://doi.org/10.1063/1.464521
  14. S. Nozakura and M. S. Murahashi, J. Polym. Sci., Polym. Chem. Ed., 11, 279 (1973).
  15. H. D. Ghim, J. P. Kim, I. C. Kwon, C. J. Lee, J. Lee, S. S. Kim, S. M. Lee, W. S. Yoon, and W. S. Lyoo, J. Appl. Polym. Sci., 87, 1519 (2003). https://doi.org/10.1002/app.11551
  16. W. S. Lyoo, B. C. Kim, and J. Blackwell, Macromolecules, 34, 3982 (2001). https://doi.org/10.1021/ma001338g
  17. N. Nakajima, Kobunshi Kagaku, 11, 142 (1954). https://doi.org/10.1295/koron1944.11.142
  18. W. S. Lyoo, B. C. Kim, and W. S. Ha, Polym. Eng. Sci., 37, 1259 (1997). https://doi.org/10.1002/pen.11770
  19. W. S. Lyoo and W. S. Ha, Polymer, 40, 497 (1999). https://doi.org/10.1016/S0032-3861(98)00066-4
  20. W. S. Lyoo and W. S. Ha, Polymer, 37, 3121 (1996). https://doi.org/10.1016/0032-3861(96)89414-6
  21. K. Arruda, T. M. Caniello, and A. A. A. Queiroz, Mater. Sci. Eng. C, 24, 697 (2004). https://doi.org/10.1016/j.msec.2004.08.014
  22. Y. S. Chung, C. Y. Choi, K. W. Lee, Y. H. Choa, and P. K. Pak, J. Korean Fiber Soc., 39, 383 (2002).
  23. B. Granqvist, A. Helmnen, M. Vehvilainen, V. Aaritalo, J. Seppala, and M. Linden, Colloid Polym. Sci., 282, 495 (2004). https://doi.org/10.1007/s00396-003-0973-3
  24. T. H. Lanman, N. A. Martin, and H. V. Vinters, Neuoradiol, 33, 1 (1998).
  25. J. F. Tomashefski, A. M. Cohen, and C. F. Doershuk, Human Pathology, 19, 555 (1998).
  26. W. S. Lyoo, I. S. Seo, J. H. Yeum, W. S. Yoon, B. C. Ji, B. S. Kim, S. S. Lee, and B. C. Kim, J. Appl. Polym. Sci., 86, 463 (2002). https://doi.org/10.1002/app.11006
  27. J. H. Choi, S. W. Ko, B. C. Kim, J. Blackwell, and W. S. Lyoo, Macromolecules, 34, 2964 (2001). https://doi.org/10.1021/ma001710s
  28. T. Yamamoto, S. Seki, R. Fukae, O. Sangen, and M. Kamachi, Polym. J., 22, 567 (1990). https://doi.org/10.1295/polymj.22.567
  29. T. Yamamoto, S. Seki, M. Hirota, and M. Kamachi, Polym. J., 22, 1417 (1987).
  30. S. I. Song, Y. J. Seoung, and B. C. Kim, Theories and Applications of Rheology, 7, 135 (2003).
  31. E. J. Lee, N. H. Kim, and B. C. Kim, Korean J. Rheol., 9, 118 (1997).
  32. M. Watase and K. Nishinari, Polym. J., 21, 567 (1989). https://doi.org/10.1295/polymj.21.567
  33. K. Yamaura, M. Itoh, T. Tanigami, and S. Matsuzawa, J. Appl. Polym. Sci., 37, 2709 (1989). https://doi.org/10.1002/app.1989.070370921
  34. M. Hanaya, I. Osawa, and K. Watanabe, J. Therm. Anal. Calorim., 76, 529 (2004,). https://doi.org/10.1023/B:JTAN.0000028031.50047.85
  35. S. H. Hyon, W. I. Cha, and Y. Ikada, Polym. Bull., 22, 119 (1989). https://doi.org/10.1007/BF00255200
  36. K. J. Packer and D. J. Tomlinson, Trans. Faraday Soc., 67, 1302 (1971). https://doi.org/10.1039/tf9716701302
  37. G. T. Safford, P. C. Schaffer, P. S. Leung, G. F. Doebbler, G. W. Brady, and E. F. X. Lyden, J. Chem. Phys., 50, 3140 (1969).
  38. E. Prokopova, P. Stern, and O. Quadrat, Colloid Polym. Sci., 263, 899 (1985). https://doi.org/10.1007/BF01469627
  39. M. G. Cacace, E. M. Landau, and J. Ramsden, J. Rev. Biophys., 30, 241 (1997). https://doi.org/10.1017/S0033583597003363
  40. M. Watase and K. Nishinari, Polym. J., 21, 567 (1989). https://doi.org/10.1295/polymj.21.567