DOI QR코드

DOI QR Code

Influence of Electroless Ni-plated MWCNTs on Thermal Conductivity and Fracture Toughness of MWCNTs/Al2O3/Epoxy Composites

무전해 니켈도금된 다중벽 탄소나노튜브의 첨가가 알루미나강화 에폭시 복합재료의 열전도도 및 파괴인성에 미치는 영향

  • Received : 2013.01.12
  • Accepted : 2013.02.21
  • Published : 2013.07.25

Abstract

In this work, the effect of electroless Ni-plating of multi-walled carbon nanotubes (MWCNTs) on thermal conductivity and fracture toughness properties of MWCNTs/$Al_2O_3$/epoxy composites was investigated. The surface properties of the Ni-plated MWCNTs were determined by scanning electron microscopy (SEM), X-ray photoelectron spectrometry (XPS), and X-ray diffraction (XRD) analyses. Thermal conductivity was tested using a thermal conductivity measuring system. The fracture toughness of the composites was carried out through the critical stress intensity factor ($K_{IC}$) measurement. As a result, the electroless Ni-plated MWCNTs led to a significant change of surface characteristics of the MWCNTs. Thermal conductivity and fracture toughness of the MWCNTs/$Al_2O_3$/epoxy composites were greater than those of non-treated ones. These results were probably due to the improvement of intermolecular interaction between the Ni-MWCNTs and the matrix resins.

본 연구에서는 무전해 니켈도금에 따른 탄소나노튜브의 표면특성변화가 알루미나강화 에폭시 복합재료의 열전도도 및 파괴인성에 미치는 영향에 대하여 살펴보았다. 무전해 니켈도금된 탄소나노튜브의 표면특성은 주사전자현미경(SEM), X-선 광전자분광기(XPS), X-선 회절분석(XRD)을 통하여 알아보았다. 열전도도는 열전도율 측정 시스템으로 측정하였고, 파괴인성은 만능시험기(UTM)를 이용한 임계응력세기인자($K_{IC}$)를 측정하여 분석하였다. 실험결과, 무전해 니켈도금은 탄소나노튜브의 표면특성의 변화를 가져오며, 니켈도금된 MWCNTs(Ni-MWCNTs)가 들어있는 경우 미처리 MWCNTs와 비교하여 우수한 열전도도 및 파괴인성을 보였다. 이는 Ni-MWCNTs와 에폭시수지와의 분자간 상호작용의 향상 때문이라 판단된다.

Keywords

References

  1. M. M. Schwartz, Nanocomposites Materials Handbook, 2nd ed., McGraw-Hill, New York, 1992.
  2. D. D. L. Chung, Appl. Therm. Eng., 21, 1593 (2001). https://doi.org/10.1016/S1359-4311(01)00042-4
  3. L. C. Sim, S. L. Ramanan, and H. Ismail, Thermochim. Acta, 430, 155 (2005). https://doi.org/10.1016/j.tca.2004.12.024
  4. S. J. Park and G. Y. Heo, Macromol. Res., 17, 870 (2009). https://doi.org/10.1007/BF03218628
  5. S. B. Lee, H. J. Lee, and I. K. Hong, J. Ind. Eng. Chem., 18, 635 (2012). https://doi.org/10.1016/j.jiec.2011.11.030
  6. S. J. Park, G. Y. Heo, and K. Y. Rhee, Polymer(Korea), 35, 548 (2011).
  7. F. L. Jin and S. J. Park, Carbon Lett., 14, 1 (2013). https://doi.org/10.5714/CL.2012.14.1.001
  8. S. Iijima, Nature, 354, 56 (1991). https://doi.org/10.1038/354056a0
  9. J. S. Im, S. J. Kim, P. H. Kang, and Y. S. Lee, J. Ind. Eng. Chem., 15, 699 (2009). https://doi.org/10.1016/j.jiec.2009.09.048
  10. Y. J. Noh, H. S. Kim, and S. Y. Kim, Carbon Lett., 13, 243 (2012). https://doi.org/10.5714/CL.2012.13.4.243
  11. M. V. Naseh, A. A. Khodadadi, Y. Mortazavi, F. Pourfayaz, O. Alizadeh, and M. Maghrebi, Carbon, 48, 1369 (2010). https://doi.org/10.1016/j.carbon.2009.12.027
  12. M. T. Kim, K. Y. Rhee, H. J. Kim, and D. H. Jung, Carbon Lett., 13, 187 (2012). https://doi.org/10.5714/CL.2012.13.3.187
  13. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbot, J. Appl. Phys., 32, 1679 (1961). https://doi.org/10.1063/1.1728417
  14. M. Abdalla, D. Dean, M. Theodore, J. Fielding, E. Nyairo, and G. Price, Polymer, 51, 1614 (2010). https://doi.org/10.1016/j.polymer.2009.05.059
  15. W. A. Curtin and B. W. Sheldon, Mater. Today, 7, 44 (2004).
  16. G. D. Zhan and A. K. Mukherjee, Int. J. Appl. Ceram. Technol., 1, 161 (2004).
  17. A. Peigney, Ch. Laurent, and A. Rousset, J. Eur. Ceram. Soc., 18, 1995 (1998). https://doi.org/10.1016/S0955-2219(98)00141-1
  18. R. W. Siegel, S. K. Chang, B. J. Ash, J. Stone, P. M. Ajayan, R. W. Doremus, and L. S. Schadler, Scripta Mater., 44, 2061 (2001). https://doi.org/10.1016/S1359-6462(01)00892-2
  19. C. B. Mo, S. I. Cha, K. T. Kim, and S. H. Hong, Mater. Sci. Eng. A, 395, 124 (2004).
  20. S. J. Park, B. J. Kim, K. M. Bae, and K. H. An, Mater. Sci. Eng. A, 528, 4934 (2011).
  21. S. J. Park, K. M. Bae, and M. K. Seo, J. Ind. Eng. Chem., 16, 337 (2010). https://doi.org/10.1016/j.jiec.2010.01.051
  22. B. J. Kim, M. S. Hong, K. M. Bae, and H. S. Lee, Appl. Chem. Eng., 22, 672 (2011).
  23. S. J. Park and B. J. Jun, J. Colloid Interface Sci., 284, 204 (2005). https://doi.org/10.1016/j.jcis.2004.09.074
  24. N. S. Mcintyre and M. G. Gook, Anal. Chem., 47, 2208 (1975). https://doi.org/10.1021/ac60363a034
  25. S. J. Park and Y. S. Jang, J. Colloid interface Sci., 263, 170 (2003). https://doi.org/10.1016/S0021-9797(03)00290-X
  26. H. Li, W. Wang, H. Chen, and J. F. Deng, J. Non-Cryst. Solids, 281, 31 (2001). https://doi.org/10.1016/S0022-3093(00)00430-0
  27. B. Ni, T. Watanabe, and S. R. Phillpot, J. Phys. Condens. Matter, 21, 084219 (2009). https://doi.org/10.1088/0953-8984/21/8/084219
  28. A. Moisala, Q. Li, I. A. Kinloch, and A. H. Windle, Compos. Sci. Tech., 66, 1285 (2006). https://doi.org/10.1016/j.compscitech.2005.10.016
  29. D. W. Kang and H. G. Yeo, Polymer(Korea), 29, 161 (2005).

Cited by

  1. A Study on Thermal Behaviors of Expanded Graphite/Erythritol Composites vol.25, pp.5, 2014, https://doi.org/10.14478/ace.2014.1016