DOI QR코드

DOI QR Code

연결부 형태가 다른 두 가지 scallop 임플란트에서 경부 나사선 피치가 응력 분포에 미치는 영향 : 삼차원적유한요소분석

Effects of Coronal Thread Pitch in Scalloped Implant with 2 Different Connections on Loading Stress using 3 Dimensional Finite Element Analysis

  • 최경수 (부산대학교 치의학전문대학원 보철학 교실) ;
  • 박성훈 (부산대학교 기계공학과) ;
  • 이재훈 (부산대학교 기계공학과) ;
  • 허중보 (부산대학교 치의학전문대학원 보철학 교실) ;
  • 윤미정 (부산대학교 치의학전문대학원 보철학 교실) ;
  • 전영찬 (부산대학교 치의학전문대학원 보철학 교실) ;
  • 정창모 (부산대학교 치의학전문대학원 보철학 교실)
  • Choi, Kyung-Soo (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Park, Seong-Hun (School of Mechanical Engineering, Pusan National University) ;
  • Lee, Jae-Hoon (School of Mechanical Engineering, Pusan National University) ;
  • Huh, Jung-Bo (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Yun, Mi-Jung (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Jeon, Young-Chan (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Jeong, Chang-Mo (Department of Prosthodontics, School of Dentistry, Pusan National University)
  • 투고 : 2013.03.10
  • 심사 : 2013.06.25
  • 발행 : 2013.06.30

초록

본 연구는 삼차원적 유한요소분석을 통하여 연결부 형태가 다른 두 가지 scallop 임플란트의 경부 나사선 피치가 응력 분포에 미치는 영향을 간접적으로 확인하고자 하였다. 4가지 경부 나사선 피치 (0.4mm, 0.5mm, 0.6mm, 0.7mm)를 갖는 scallop 임플란트를 두 가지 다른 연결부 형태 (platform matching connection, platform mismatching connection)로 지대주와 연결되는 유한요소모형을 설계하였다. 8개의 모든 모델에 100N의 하중을 수직 및 30도 경사 방향으로 인가하여, 임플란트, 지대주, 그리고 치조골에 가해지는 최대등가응력을 분석하였다. 유한요소분석결과 응력은 치밀골에 집중되었다. 작은 나사 피치가 설계된 platform mismatching connection 모델에서 수직 방향과 경사하중 시 최대등가응력이 가장 낮게 나타났다. 측정되었다. Platform matching connection 모델에서는 경사하중의 경우 0.6mm, 수직하중의 경우 0.4mm 나사 피치에서 가장 낮은 최대등가응력을 보였다. 따라서 scallop 임플란트에서 platform mismatching connection은 최대등가응력을 감소시키는 데 중요한 역할을 하며, 경부 나사 피치가 작을수록 최대등가응력이 감소되는 경향을 보임을 알 수 있었다.

Purpose of present study is to investigate the effects of thread pitch in coronal portion in scalloped implant with 2 different connections on loading stress using 3 dimensional finite element analysis. Scalloped implant with 4 different thread pitches (0.4mm, 0.5mm, 0.6, and 0.7mm) in the coronal part was modeled with 2 different implant-abutment connections. Platform matching connection had the same implant and abutment diameter so that they were in flush contact at the periphery while platform mismatching connection had smaller abutment diameter than implant so that their connection was made away from periphery of implant-bone interface. Occlusal loading of 100N force was applied vertically and 30 degree obliquely to all 8 models and the maximum von Mises bone stress was identified. Loading stress as highly concentrated in cortical bone. Platform mismatching scalloped implant with small thread pitch (0.4mm) model had consistently lowest maximum von Mises bone stress in vertical and oblique loads. Platform matching model had lowest maximum von Mises bone stress with 0.6mm thread pitch in vertical load and with 0.4mm thread pitch in oblique load. Platform mismatching connection had important roles in reducing maximum von Mises bone stress. Scalloped implant with smaller coronal thread pitch showed trend of reducing maximum von Mises bone stress under load.

키워드

참고문헌

  1. Lindquist LW, Carlsson GE, Jemt T. A prospective 15-year follow-up study of mandibular fixed prosthesis supported by osseointegrated implants. Clinical results and marginal bone loss. Clin Oral Implants Res 1996;7:329336. https://doi.org/10.1034/j.1600-0501.1996.070405.x
  2. Jemt T, Lekholm U,Adell R. Osseointegration in the treatment of partially edentulous patients: A preliminary study of 876 consecutively placed fixtures. Int J Oral Maxillofac Implants 1989;4:211217.
  3. Adell R, Lekholm U, Rockler B, Brnemark P-I. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 1981;10:387416. https://doi.org/10.1016/S0300-9785(81)80077-4
  4. Brunski JB. Biomaterials and biomechanics in dental implant design. Int J Oral Maxillofac Implants 1988 Summer;3(2):85-97.
  5. Steigenga JT, al-Shammari KF, Nociti FH, Misch CE, Wang HL. Dental implant design and its relationship to long-term implant success. Implant Dent 2003;12 (4):306-17. https://doi.org/10.1097/01.ID.0000091140.76130.A1
  6. Albrektsson T, Sennerby L. State of the art in oral implants. J Clin Periodontol 1991 Jul;18(6):474-81. https://doi.org/10.1111/j.1600-051X.1991.tb02319.x
  7. Whrle, PS. Nobel perfect esthetic scalloped implant: Rationale for a new design. Clin Implant Dent Relat Res.2003 5: 64-73. https://doi.org/10.1111/j.1708-8208.2003.tb00017.x
  8. Becker WC, Ochsenbein C, Tibbetts L, Becker BE. Alveolar bone anatomic profiles as measured from dry skulls. Clinical ramifications. J Clin Periodontol 1997 Oct;24(10): 727-31. https://doi.org/10.1111/j.1600-051X.1997.tb00189.x
  9. Nowzari H, Chee W, Yi K, Pak M, Chung WH, Rich S. Scalloped dental implants: a retrospective analysis of radiographic and clinical outcomes of 17 Nobel- Perfect implants in 6 patients. Clin Implant Dent Relat Res 2006;8:1-10. https://doi.org/10.2310/j.6480.2005.00034.x
  10. Kan J, Rungcharassaeng K, Lieddelow G, Henry P, Goodacre C. Peri-implant tissue response following immediate provisional restoration of scalloped implants in the esthetic zone: A one-year pilot prospective multi-center study. J Prosthet Dent 2007;97:109-118. https://doi.org/10.1016/S0022-3913(07)60014-6
  11. Tymstra N, Raghoebar GM, Vissink A, Den Hartog L, Stellingsma K, Meijer HJ. Treatment outcome of two adjacent implant crowns with different implant platform designs in the aesthetic zone: a 1-year randomized clinical trial. J Clin Periodontol 2010;38: 74-85.
  12. Abrahamsson I, Berglundh T. Tissue characteristics at microthreaded implants: An experimental study in dogs. Clin Implant Dent Relat Res 2006; 8: 107-113. https://doi.org/10.1111/j.1708-8208.2006.00016.x
  13. Lee D, Choi Y, Park K, Kim C, Moon I. Effect of microthread on the maintenance of marginal bone level: a 3-year prospective study. Clin Oral Implants Res 2007;18:465-470. https://doi.org/10.1111/j.1600-0501.2007.01302.x
  14. Shin Y, Han C, Heo S, Kim S, Chun H. Radiographic evaluation of marginal bone level around implants with different neck designs after 1 year. The Int J Oral Maxillofac Implants 2006;21:789-794.
  15. Choi KS, Lozada JL, Kan JY, Lee SH, Kim CS, Kwon TG. Study of an experimental microthreaded scalloped implant design: proximal bone healing at different interimplant distances in a canine model. Int J Oral Maxillofac Implants 2010;25:195-202.
  16. Chun H, Shin H, Han C, Lee S. Influence of implant abutment type on stress distribution in bone under various loading conditions using finite element analysis. Int J Oral Maxillofac Implants 2006;21:195-
  17. Merz BR, Hunenbart S, Belser UC, Mechanics of the implant-abutment connection: an 8-degree taper compared to a butt joint connection. The Int J Oral Maxillofac Implants 2000;15:789-794.
  18. Abkowitz S, Burke JJ, Hiltz RH. Titanium in Industry. New York: Van Nostrand Co Inc, 1955.
  19. Katranji A, Misch K, Wang HL. Cortical bone thickness in dentate and edentulous human cadavers. J Periodontol 2007;78:974-8. https://doi.org/10.1902/jop.2007.060294
  20. Misch CE, Suzuki JB, Misch-Dietsh FM, Bidez MW. A positive correlation between occlusal trauma and peri-implant bone loss: literature support. Implant Dent. 2005 Jun;14(2):108-16. https://doi.org/10.1097/01.id.0000165033.34294.db
  21. Oh TJ, Yoon J, Misch C E, Wang HL. The causes of early implant bone loss: myth or science? J Periodontol 2002;73:322-333. https://doi.org/10.1902/jop.2002.73.3.322
  22. Choi KS, Park SH, Lee JH, Jeon YC, Yun MJ, Jeong CM. Stress distribution of scalloped implant with different microthread and connection configurations using 3 dimensional finite element analysis. Int J Oral Maxillofac Implants (manuscript accepted).