DOI QR코드

DOI QR Code

Tooth-derived bone graft material

  • Kim, Young-Kyun (Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital) ;
  • Lee, Junho (Korea Tooth Bank) ;
  • Um, In-Woong (Korea Tooth Bank) ;
  • Kim, Kyung-Wook (Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University) ;
  • Murata, Masaru (Department of Oral and Maxillofacial Surgery, Health Sciences University of Hokkaido) ;
  • Akazawa, Toshiyuki (Department of Industrial Technology Research, Hokkaido Industrial Research Institute) ;
  • Mitsugi, Masaharu (Takamatsu Oral and Maxillofacial Surgery Clinic)
  • 투고 : 2013.04.02
  • 심사 : 2013.05.28
  • 발행 : 2013.06.30

초록

With successful extraction of growth factors and bone morphogenic proteins (BMPs) from mammalian teeth, many researchers have supported development of a bone substitute using tooth-derived substances. Some studies have also expanded the potential use of teeth as a carrier for growth factors and stem cells. A broad overview of the published findings with regard to tooth-derived regenerative tissue engineering technique is outlined. Considering more than 100 published papers, our team has developed the protocols and techniques for processing of bone graft material using extracted teeth. Based on current studies and studies that will be needed in the future, we can anticipate development of scaffolds, homogenous and xenogenous tooth bone grafts, and dental restorative materials using extracted teeth.

키워드

참고문헌

  1. Yoshida T, Vivatbutsiri P, Morriss-Kay G, Saga Y, Iseki S. Cell lineage in mammalian craniofacial mesenchyme. Mech Dev 2008;125:797-808. https://doi.org/10.1016/j.mod.2008.06.007
  2. Morrison SJ, White PM, Zock C, Anderson DJ. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 1999;96:737-49. https://doi.org/10.1016/S0092-8674(00)80583-8
  3. Stevens A, Zuliani T, Olejnik C, LeRoy H, Obriot H, Kerr-Conte J, et al. Human dental pulp stem cells differentiate into neural crest-derived melanocytes and have label-retaining and sphere-forming abilities. Stem Cells Dev 2008;17:1175-84. https://doi.org/10.1089/scd.2008.0012
  4. Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 2008;26:1787-95. https://doi.org/10.1634/stemcells.2007-0979
  5. Reddi AH. Bone matrix in the solid state: geometric influence on differentiation of fibroblasts. Adv Biol Med Phys 1974;15:1-18. https://doi.org/10.1016/B978-0-12-005215-8.50007-3
  6. Huggins C, Wiseman S, Reddi AH. Transformation of fibroblasts by allogeneic and xenogeneic transplants of demineralized tooth and bone. J Exp Med 1970;132:1250-8. https://doi.org/10.1084/jem.132.6.1250
  7. Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res 1971;50:1392-406. https://doi.org/10.1177/00220345710500060601
  8. Kawai T, Urist MR. Bovine tooth-derived bone morphogenetic protein. J Dent Res 1989;68:1069-74. https://doi.org/10.1177/00220345890680060301
  9. Bessho K, Tagawa T, Murata M. Purification of rabbit bone morphogenetic protein derived from bone, dentin, and wound tissue after tooth extraction. J Oral Maxillofac Surg 1990;48:162-9. https://doi.org/10.1016/S0278-2391(10)80204-6
  10. Bessho K, Tagawa T, Murata M. Comparison of bone matrix-derived bone morphogenetic proteins from various animals. J Oral Maxillofac Surg 1992;50:496-501. https://doi.org/10.1016/S0278-2391(10)80323-4
  11. Feng JQ, Luan X, Wallace J, Jing D, Ohshima T, Kulkarni AB, et al. Genomic organization, chromosomal mapping, and promoter analysis of the mouse dentin sialophosphoprotein (Dspp) gene, which codes for both dentin sialoprotein and dentin phosphoprotein. J Biol Chem 1998;273:9457-64. https://doi.org/10.1074/jbc.273.16.9457
  12. Ritchie HH, Ritchie DG, Wang LH. Six decades of dentinogenesis research. Historical and prospective views on phosphophoryn and dentin sialoprotein. Eur J Oral Sci 1998;106(Suppl 1):211-20. https://doi.org/10.1111/j.1600-0722.1998.tb02178.x
  13. Hoeppner LH, Secreto F, Jensen ED, Li X, Kahler RA, Westendorf JJ. Runx2 and bone morphogenic protein 2 regulate the expression of an alternative Lef1 transcript during osteoblast maturation. J Cell Physiol 2009;221:480-9. https://doi.org/10.1002/jcp.21879
  14. Handschin AE, Egermann M, Trentz O, Wanner GA, Kock HJ, Zünd G, et al. Cbfa-1 (Runx-2) and osteocalcin expression by human osteoblasts in heparin osteoporosis in vitro. Clin Appl Thromb Hemost 2006;12:465-72. https://doi.org/10.1177/1076029606293433
  15. Ye L, MacDougall M, Zhang S, Xie Y, Zhang J, Li Z, et al. Deletion of dentin matrix protein-1 leads to a partial failure of maturation of predentin into dentin, hypomineralization, and expanded cavities of pulp and root canal during postnatal tooth development. J Biol Chem 2004;279:19141-8. https://doi.org/10.1074/jbc.M400490200
  16. Kim YK, Kim SG, Oh JS, Jin SC, Son JS, Kim SY, et al. Analysis of the inorganic component of autogenous tooth bone graft material. J Nanosci Nanotechnol 2011;11:7442-5. https://doi.org/10.1166/jnn.2011.4857
  17. Kim GW, Yeo IS, Kim SG, Um IW, Kim YK. Analysis of crystalline structure of autogenous tooth bone graft material: X-Ray diffraction analysis. J Korean Assoc Oral Maxillofac Surg 2011;37:225-8. https://doi.org/10.5125/jkaoms.2011.37.3.225
  18. Karfeld-Sulzer LS, Weber FE. Biomaterial development for oral and maxillofacial bone regeneration. J Korean Assoc Oral Maxillofac Surg 2012;38:264-70. https://doi.org/10.5125/jkaoms.2012.38.5.264
  19. Urist MR. Bone: formation by autoinduction. Science 1965;150: 893-9. https://doi.org/10.1126/science.150.3698.893
  20. Hanamura H, Higuchi Y, Nakagawa M, Iwata H, Nogami H, Urist MR. Solubilized bone morphogenetic protein (BMP) from mouse osteosarcoma and rat demineralized bone matrix. Clin Orthop Relat Res 1980;(148):281-90.
  21. Sampath TK, Reddi AH. Homology of bone-inductive proteins from human, monkey, bovine, and rat extracellular matrix. Proc Natl Acad Sci U S A 1983;80:6591-5. https://doi.org/10.1073/pnas.80.21.6591
  22. Butler WT, Mikulski A, Urist MR, Bridges G, Uyeno S. Noncollagenous proteins of a rat dentin matrix possessing bone morphogenetic activity. J Dent Res 1977;56:228-32. https://doi.org/10.1177/00220345770560030601
  23. Conover MA, Urist MR. Dentin matrix morphogenetic protein. In: The chemistry and biology of mineralized connective tissues: Proceedings of the First International Conference on the Chemistry and Biology of Mineralized Connective Tissues. 3-7 May 1981, Northwestern University Dental School, Chicago, IL, USA. New York: Elsevier-North Holland Inc; 1981:597-606.
  24. Chung PH. Method for extracting tooth protein from extracted tooth. Korea Intellectual Property Rights Information Service. Patent. Application No. 10-2002-0008789.
  25. Chung PH. Tooth protein extracted from extracted tooth and method for using the same. Korea intellectual property rights information service. Patent. Application No. 10-2004-0 051812.
  26. Chiba M. Experimental studies of bone morphogenetic protein derived from bovine tooth. Jpn J Oral Maxillofac Surg 1988;34:1557-66. https://doi.org/10.5794/jjoms.34.1557
  27. Urist MR, Mizutani H, Conover MA, Lietze A, Finerman GA. Dentin, bone, and osteosarcoma tissue bone morphogenetic proteins. Prog Clin Biol Res 1982;101:61-81.
  28. Bessho K, Tagawa T, Murata M. Analysis of bone morphogenetic protein (BMP) derived from human and bovine bone matrix. Clin Orthop Relat Res 1991;(268):226-34.
  29. Bessho K, Tanaka N, Matsumoto J, Tagawa T, Murata M. Human dentin-matrix-derived bone morphogenetic protein. J Dent Res 1991;70:171-5. https://doi.org/10.1177/00220345910700030301
  30. Ito K, Arakawa T, Murata M, Tazaki J, Takuma T, Arisue M. Analysis of bone morphogenetic protein in human dental pulp tissues. Arch Bioceramics Res 2008;8:166-9.
  31. Chae YP, Lee JH, Kim SK, Yeo HH. A histologic study on the repair of rat calvarial critical size defect with bovine bone morphogenetic protein (b-BMP). J Korean Assoc Oral Maxillofac Surg 1997;23:290-303.
  32. Kim BR, Lee JH, Kim JW. Comparison of bone inducing process of porcine bone matrix-derived bmp combined with the following, freeze-dried allogeneic bone, surface demineralized allogeneic bone, and demineralized allogeneic bone powder in rats. J Korean Assoc Oral Maxillofac Surg 1998;24:380-95.
  33. Oh DW, Lee SH, Shin HI. Histologic evaluation of the ectopic bone formation induced by partially purified BMP-fibrous glass membrane complex. J Korean Assoc Oral Maxillofac Surg 1996;22:86-100.
  34. Park JC, Yu SB, Chung YI, Tae GY, Kim JJ, Park YD, et al. Bone regeneration with MMP sensitive hyaluronic acid-based hydrogel, rhBMP-2 and nanoparticles in rat calvarial critical size defect(CSD) model. J Korean Assoc Oral Maxillofac Surg 2009;35:137-45.
  35. Kim SJ, Kim MR, Oh JS, Han I, Shin SW. Effects of polycaprolactone-tricalcium phosphate, recombinant human bone morphogenetic protein-2 and dog mesenchymal stem cells on bone formation: pilot study in dogs. Yonsei Med J 2009;50:825-31. https://doi.org/10.3349/ymj.2009.50.6.825
  36. Lee JH, Kim CS, Choi KH, Jung UW, Yun JH, Choi SH, et al. The induction of bone formation in rat calvarial defects and subcutaneous tissues by recombinant human BMP-2, produced in Escherichia coli. Biomaterials 2010;31:3512-9. https://doi.org/10.1016/j.biomaterials.2010.01.075
  37. Schmidt-Schultz TH, Schultz M. Intact growth factors are conserved in the extracellular matrix of ancient human bone and teeth: a storehouse for the study of human evolution in health and disease. Biol Chem 2005;386:767-76.
  38. Gao J, Symons AL, Bartold PM. Expression of transforming growth factor-beta 1 (TGF-beta1) in the developing periodontium of rats. J Dent Res 1998;77:1708-16. https://doi.org/10.1177/00220345980770090701
  39. Finkelman RD, Mohan S, Jennings JC, Taylor AK, Jepsen S, Baylink DJ. Quantitation of growth factors IGF-I, SGF/IGF-II, and TGF-beta in human dentin. J Bone Miner Res 1990;5:717-23.
  40. Rocha LB, Goissis G, Rossi MA. Biocompatibility of anionic collagen matrix as scaffold for bone healing. Biomaterials 2002;23:449-56. https://doi.org/10.1016/S0142-9612(01)00126-0
  41. Rosa FP, Lia RC, de Souza KO, Goissis G, Marcantonio E Jr. Tissue response to polyanionic collagen: elastin matrices implanted in rat calvaria. Biomaterials 2003;24:207-12. https://doi.org/10.1016/S0142-9612(02)00292-2
  42. Maki F, Murata M, Kitajo H, Sato D, Taira H, Arisue M. Bone healing in large mandibular defects without periosteum in adult rabbits: a new application of collagenous sponge for bone regene-ration. J Hard Tissue Biol 2000;9:56-62.
  43. Nampo T, Watahiki J, Enomoto A, Taguchi T, Ono M, Nakano H, et al. A new method for alveolar bone repair using extracted teeth for the graft material. J Periodontol 2010;81:1264-72. https://doi.org/10.1902/jop.2010.100016
  44. Linde A. Dentin matrix proteins: composition and possible functions in calcification. Anat Rec 1989;224:154-66. https://doi.org/10.1002/ar.1092240206
  45. Gongloff RK. Vital root retention. A 5-year experience. Int J Oral Maxillofac Surg 1986;15:33-8. https://doi.org/10.1016/S0300-9785(86)80009-6
  46. Fareed K, Khayat R, Salins P. Vital root retention: a clinical procedure. J Prosthet Dent 1989;62:430-4. https://doi.org/10.1016/0022-3913(89)90176-5
  47. Freedman GL. Intentional partial odontectomy: report of case. J Oral Maxillofac Surg 1992;50:419-21. https://doi.org/10.1016/0278-2391(92)90412-S
  48. Tsukamoto-Tanaka H, Ikegame M, Takagi R, Harada H, Ohshima H. Histochemical and immunocytochemical study of hard tissue formation in dental pulp during the healing process in rat molars after tooth replantation. Cell Tissue Res 2006;325:219-29. https://doi.org/10.1007/s00441-005-0138-4
  49. Takamori Y, Suzuki H, Nakakura-Ohshima K, Cai J, Cho SW, Jung HS, et al. Capacity of dental pulp differentiation in mouse molars as demonstrated by allogenic tooth transplantation. J Histochem Cytochem 2008;56:1075-86. https://doi.org/10.1369/jhc.2008.951558
  50. Hasegawa T, Suzuki H, Yoshie H, Ohshima H. Influence of extended operation time and of occlusal force on determination of pulpal healing pattern in replanted mouse molars. Cell Tissue Res 2007;329:259-72. https://doi.org/10.1007/s00441-007-0424-4
  51. Bang G, Urist MR. Bone induction in excavation chambers in matrix of decalcified dentin. Arch Surg 1967;94:781-9. https://doi.org/10.1001/archsurg.1967.01330120035008
  52. Yeomans JD, Urist MR. Bone induction by decalcified dentine implanted into oral, osseous and muscle tissues. Arch Oral Biol 1967;12:999-1008. https://doi.org/10.1016/0003-9969(67)90095-7
  53. Carvalho VA, Tosello Dde O, Salgado MA, Gomes MF. Histomor-phometric analysis of homogenous demineralized dentin matrix as osteopromotive material in rabbit mandibles. Int J Oral Maxillofac Implants 2004;19:679-86.
  54. Gomes MF, Banzi EC, Destro MF, Lavinicki V, Goulart MD. Homogenous demineralized dentin matrix for application in cranioplasty of rabbits with alloxan-induced diabetes: histomorphometric analysis. Int J Oral Maxillofac Implants 2007;22:939-47.
  55. Bessho K, Tagawa T, Murata M. Purification of bone morphogenetic protein derived from bovine bone matrix. Biochem Biophys Res Commun 1989;165:595-601. https://doi.org/10.1016/S0006-291X(89)80008-7
  56. Nilsson OS, Urist MR, Dawson EG, Schmalzried TP, Finerman GA. Bone repair induced by bone morphogenetic protein in ulnar defects in dogs. J Bone Joint Surg Br 1986;68:635-42. https://doi.org/10.2106/00004623-198668040-00031
  57. Sato K, Urist MR. Induced regeneration of calvaria by bone morphogenetic protein (BMP) in dogs. Clin Orthop Relat Res 1985;(197):301-11.
  58. Urist MR. Experimental delivery systems for bone morphogenetic protein. In: Wise DL, Altobelli DE, Schwartz ER, Gresser JD, Trantolo DJ, Yaszemski M, eds. Handbook of biomaterials and applications. Section 3: Orthopaedic biomaterials applications. Boston: Marcel Dekker; 1995:1093-133.
  59. Herford AS, Boyne PJ. Reconstruction of mandibular continuity defects with bone morphogenetic protein-2 (rhBMP-2). J Oral Maxillofac Surg 2008;66:616-24. https://doi.org/10.1016/j.joms.2007.11.021
  60. Jung RE, Weber FE, Thoma DS, Ehrbar M, Cochran DL, Hämmerle CH. Bone morphogenetic protein-2 enhances bone formation when delivered by a synthetic matrix containing hydroxyapatite/tricalciumphosphate. Clin Oral Implants Res 2008;19:188-95. https://doi.org/10.1111/j.1600-0501.2007.01431.x
  61. Boerckel JD, Kolambkar YM, Dupont KM, Uhrig BA, Phelps EA, Stevens HY, et al. Effects of protein dose and delivery system on BMP-mediated bone regeneration. Biomaterials 2011;32:5241-51. https://doi.org/10.1016/j.biomaterials.2011.03.063
  62. Ike M, Urist MR. Recycled dentin root matrix for a carrier of recombinant human bone morphogenetic protein. J Oral Implantol 1998;24:124-32. https://doi.org/10.1563/1548-1336(1998)024<0124:RDRMFA>2.3.CO;2
  63. Yagihashi K, Miyazawa K, Togari K, Goto S. Demineralized dentin matrix acts as a scaffold for repair of articular cartilage defects. Calcif Tissue Int 2009;84:210-20. https://doi.org/10.1007/s00223-008-9205-7
  64. Murata M. Bone engineering using human demineralized dentin matrix and recombinant human BMP-2. Hard Tissue Biol 2005;14:80-1. https://doi.org/10.2485/jhtb.14.80
  65. Murata M, Akazawa T, Hino J, Tazaki J, Ito K, Arisue M. Bioche-mical and histo-morphometrical analyses of bone and cartilage induced by human decalcified dentin matrix and BMP-2. Oral Biol Res 2011;35:9-14. https://doi.org/10.21851/obr.35.1.201103.9
  66. Urist MR. Bone histogenesis and morphogenesis in implants of demineralized enamel and dentin. J Oral Surg 1971;29:88-102.
  67. Inoue T, Deporter DA, Melcher AH. Induction of cartilage and bone by dentin demineralized in citric acid. J Periodontal Res 1986;21:243-55. https://doi.org/10.1111/j.1600-0765.1986.tb01456.x
  68. Murata M, Kawai T, Kawakami T, Akazawa T, Tazaki J, Ito K, et al. Human acid-insoluble dentin with BMP-2 accelerates boneinduction in subcutaneous and intramuscular tissues. J Ceram Soc Jpn 2010;118:438-41. https://doi.org/10.2109/jcersj2.118.438
  69. Bang G. Induction of heterotopic bone formation by demineralized dentin in guinea pigs: antigenicity of the dentin matrix. J Oral Pathol 1972;1:172-85. https://doi.org/10.1111/j.1600-0714.1972.tb01657.x
  70. Bang G. Induction of heterotopic bone formation by demineralized dentin: an experimental model in guinea pigs. Scand J Dent Res 1973;81:240-50.
  71. Urist MR, Dowell TA, Hay PH, Strates BS. Inductive substrates for bone formation. Clin Orthop Relat Res 1968;59:59-96.
  72. Huggins CB, Urist MR. Dentin matrix transformation: rapid induction of alkaline phosphatase and cartilage. Science 1970;167:896-8. https://doi.org/10.1126/science.167.3919.896
  73. Reddi AH, Huggins C. Biochemical sequences in the transformation of normal fibroblasts in adolescent rats. Proc Natl Acad Sci U S A 1972;69:1601-5. https://doi.org/10.1073/pnas.69.6.1601
  74. Reddi AH, Anderson WA. Collagenous bone matrix-induced endochondral ossification hemopoiesis. J Cell Biol 1976;69:557-72. https://doi.org/10.1083/jcb.69.3.557
  75. Urist MR, DeLange RJ, Finerman GA. Bone cell differentiation and growth factors. Science 1983;220:680-6. https://doi.org/10.1126/science.6403986
  76. Tazaki J, Murata M, Yusa T, Akazawa T, Ito K, Hino J, et al. Autograft of human tooth and demineralized dentin matricesfor bone augmentation. J Ceram Soc Jpn 2010;118:442-5. https://doi.org/10.2109/jcersj2.118.442
  77. Lee HJ. Quantitative analysis of proliferation and differentiation of MG-63 cell line on the bone grafting material using human tooth [PhD thesis]. Seoul: School of Dentistry, Seoul National University; 2011.
  78. Kim YK, Kim SG, Byeon JH, Lee HJ, Um IU, Lim SC, et al. Development of a novel bone grafting material using autogenous teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:496-503. https://doi.org/10.1016/j.tripleo.2009.10.017
  79. Kim YK. Clinical application and classification of bone graft material according to component. J Korean Dent Assoc 2010;48: 263-74.
  80. Jeong HR, Hwang JH, Lee JK. Effectiveness of autogenous tooth bone used as a graft material for regeneration of bone in miniature pig. J Korean Assoc Oral Maxillofac Surg 2011;37:375-9. https://doi.org/10.5125/jkaoms.2011.37.5.375
  81. Catanzaro-Guimarães SA, Catanzaro Guimarães BP, Garcia RB, Alle N. Osteogenic potential of autogenic demineralized dentin implanted in bony defects in dogs. Int J Oral Maxillofac Surg 1986;15:160-9. https://doi.org/10.1016/S0300-9785(86)80136-3
  82. Gomes MF, dos Anjos MJ, Nogueira TO, Guimarães SA. Histo-logic evaluation of the osteoinductive property of autogenous demi-neralized dentin matrix on surgical bone defects in rabbit skulls using human amniotic membrane for guided bone regeneration. Int J Oral Maxillofac Implants 2001;16:563-71.
  83. Gomes MF, dos Anjos MJ, Nogueira Tde O, Catanzaro Guimaraes SA. Autogenous demineralized dentin matrix for tissue engineering applications: radiographic and histomorphometric studies. Int J Oral Maxillofac Implants 2002;17:488-97.
  84. Gomes MF, Abreu PP, Morosolli AR, Araujo MM, Goulart Md. Densitometric analysis of the autogenous demineralized dentin matrix on the dental socket wound healing process in humans. Braz Oral Res 2006;20:324-30. https://doi.org/10.1590/S1806-83242006000400008
  85. Murata M, Sato D, Hino J, Akazawa T, Tazaki J, Ito K, et al. Acid-insoluble human dentin as carrier material for recombinant human BMP-2. J Biomed Mater Res A 2012;100:571-7.
  86. Ryu SY, Park SI, Kim SH. Effects of demineralized dentin matrix on osseointegration of implants in dogs. J Korean Assoc Oral Maxillofac Surg 1996;22:15-27.
  87. Shapoff CA, Bowers GM, Levy B, Mellonig JT, Yukna RA. The effect of particle size on the osteogenic activity of composite grafts of allogeneic freeze-dried bone and autogenous marrow. J Periodontol 1980;51:625-30. https://doi.org/10.1902/jop.1980.51.11.625
  88. Bhaskar SN, Cutright DE, Knapp MJ, Beasley JD, Perez B, Driskell TD. Tissue reaction to intrabony ceramic implants. Oral Surg Oral Med Oral Pathol 1971;31:282-9. https://doi.org/10.1016/0030-4220(71)90086-7
  89. Hosny M, Sharawy M. Osteoinduction in young and old rats using demineralized bone powder allografts. J Oral Maxillofac Surg 1985;43:925-31. https://doi.org/10.1016/0278-2391(85)90004-7
  90. Murata M, Akazawa T, Mitsugi M, Um IW, Kim KW, Kim YK. Human dentin as novel biomaterial for bone regeneration. In: Pignatello R, ed. Biomaterials-physics and chemistry. Croatia: InTech; 2011:127-40.
  91. Miyata Y, Ozawa S, Kojima N, Kondo Y, Matuskawa R, Tanaka Y. An experimental study of bone grafting using rat milled tooth. Int J Oral Maxillofac Implants 2011;26:1210-6.
  92. Kim SG, Yeo HH, Kim YK. Grafting of large defects of the jaws with a particulate dentin-plaster of paris combination. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999;88:22-5. https://doi.org/10.1016/S1079-2104(99)70188-5
  93. Kim JY, Kim KW, Um IW, Kim YK, Lee JK. Bone healing capacity of demineralized dentin matrix materials in a mini-pig cranium defect. J Korean Dent Sci 2012;5:21-8. https://doi.org/10.5856/JKDS.2012.5.1.21
  94. Kim YK, Lee JY. The evaluation of postoperative safety of autogenous teeth bone graft. J Korean Acad Implant Dent 2009;28:29-35.
  95. Kim YK, Kim SG, Kim KW, Um IW. Extraction socket preservation and reconstruction using autogenous tooth bone graft: case report. J Korean Assoc Maxillofac Plast Reconstr Surg 2011;33:264-9.
  96. Kim YK, Yi YJ. Horizontal ridge augmentation using ridge expansion and autogenous tooth bone graft: a case report. J Dent Rehabil Appl Sci 2011;27:109-15.
  97. Kim YK, Lee HJ, Kim KW, Kim SG, Um IW. Guide bone regeneration using autogenous teeth: case reports. J Korean Assoc Oral Maxillofac Surg 2011;37:142-7. https://doi.org/10.5125/jkaoms.2011.37.2.142
  98. Kim YK, Kim SG, Um IW. Vertical and horizontal ridge augmentation using autogenous tooth bone graft materials: case report. J Korean Assoc Maxillofac Plast Reconstr Surg 2011;33:166-70.
  99. Lee JH, Kim SG, Moon SY, Oh JS, Kim YK. Clinical effectiveness of bone grafting material using autogenous tooth: preliminary report. J Korean Assoc Maxillofac Plast Reconstr Surg 2011;33:144-8.
  100. Jeong KI, Kim SG, Kim YK, Oh JS, Jeong MA, Park JJ. Clinical study of graft materials using autogenous teeth in maxillary sinus augmentation. Implant Dent 2011;20:471-5. https://doi.org/10.1097/ID.0b013e3182386d74
  101. Jeong KI, Kim SG, Oh JS, Lim SC. Maxillary sinus augmentation using autogenous teeth: preliminary report. J Korean Assoc Maxillofac Plast Reconstr Surg 2011;33:256-63.
  102. Park SM, Um IW, Kim YK, Kim KW. Clinical application of auto-tooth bone graft material. J Korean Assoc Oral Maxillofac Surg 2012;38:2-8. https://doi.org/10.5125/jkaoms.2012.38.1.2
  103. Lee JY, Kim YK, Kim SG, Lim SC. Histomorphometric study of sinus bone graft using various graft material. J Dent Rehabil Appl Sci 2011;27:141-7.
  104. Lee JY, Kim YK. Retrospective cohort study of autogenous tooth bone graft. Oral Biol Res 2012;36:39-43. https://doi.org/10.21851/obr.36.1.201203.39

피인용 문헌

  1. Effectiveness of Autogenous Tooth Bone Graft Combined with Growth Factor: Prospective Cohort Study vol.6, pp.2, 2013, https://doi.org/10.5856/jkds.2013.6.2.50
  2. Effects of Demineralized Dentin Matrix Used as an rhBMP-2 Carrier for Bone Regeneration vol.23, pp.4, 2014, https://doi.org/10.2485/jhtb.23.415
  3. Demineralized Dentin as a Semi-Rigid Barrier for Guiding Periodontal Tissue Regeneration vol.86, pp.12, 2013, https://doi.org/10.1902/jop.2015.150271
  4. Histologic tissue response to furcation perforation repair using mineral trioxide aggregate or dental pulp stem cells loaded onto treated dentin matrix or tricalcium phosphate vol.21, pp.5, 2013, https://doi.org/10.1007/s00784-016-1967-0
  5. Human tooth-derived biomaterial as a graft substitute for hard tissue regeneration vol.12, pp.3, 2017, https://doi.org/10.2217/rme-2016-0147
  6. Veterinary Osseous Site Reconstruction Utilizing Autologous Dentin from Extracted Teeth vol.8, pp.2, 2013, https://doi.org/10.5005/jp-journals-10012-1172
  7. Osteogenic Potential of Demineralized Dentin Matrix as Bone Graft Material vol.26, pp.2, 2013, https://doi.org/10.2485/jhtb.26.223
  8. Evaluation of bone healing using rhBMP-2 soaked hydroxyapatite in ridge augmentation: a prospective observational study vol.39, pp.39, 2017, https://doi.org/10.1186/s40902-017-0138-9
  9. Comparative Histomorphometric Analysis of Maxillary Sinus Augmentation With Deproteinized Bovine Bone and Demineralized Particulate Human Tooth Graft : An Experimental Study in Rabbits vol.27, pp.3, 2018, https://doi.org/10.1097/id.0000000000000755
  10. Three-dimensional ultrastructural analysis of the interface between an implanted demineralised dentin matrix and the surrounding newly formed bone vol.8, pp.None, 2013, https://doi.org/10.1038/s41598-018-21291-3
  11. A New Tooth Processing Apparatus Allowing to Obtain Dentin Grafts for Bone Augmentation: The Tooth Transformer vol.13, pp.None, 2019, https://doi.org/10.2174/1874210601913010006
  12. Particulated, Extracted Human Teeth Characterization by SEM–EDX Evaluation as a Biomaterial for Socket Preservation: An In Vitro Study vol.12, pp.3, 2013, https://doi.org/10.3390/ma12030380
  13. Nano-Structured Demineralized Human Dentin Matrix to Enhance Bone and Dental Repair and Regeneration vol.9, pp.5, 2013, https://doi.org/10.3390/app9051013
  14. Influence of autoclavation on the efficacy of extracted tooth roots used for vertical alveolar ridge augmentation vol.46, pp.4, 2013, https://doi.org/10.1111/jcpe.13090
  15. BMP-2 and type I collagen preservation in human deciduous teeth after demineralization vol.17, pp.2, 2019, https://doi.org/10.1177/2280800018784230
  16. Efficacy of autogenous teeth for the reconstruction of alveolar ridge deficiencies: a systematic review vol.23, pp.12, 2013, https://doi.org/10.1007/s00784-019-02869-1
  17. Tooth transformer®: A new method to prepare autologous tooth grafts - Histologic and histomorphometric analyses of 11 consecutive clinical cases vol.2, pp.3, 2013, https://doi.org/10.4103/gfsc.gfsc_11_19
  18. Autologous tooth graft for maxillary sinus augmentation: A multicenter clinical study vol.2, pp.3, 2013, https://doi.org/10.4103/gfsc.gfsc_13_19
  19. Using extracted teeth as a novel graft material in atrophic ridge augmentation: A report of two cases with histology and cone-beam computed tomography vol.3, pp.1, 2013, https://doi.org/10.4103/gfsc.gfsc_14_19
  20. Socket preservation using demineralized tooth graft: A case series report with histological analysis vol.3, pp.1, 2013, https://doi.org/10.4103/gfsc.gfsc_16_19
  21. Dentin-Derived Inorganic Minerals Promote the Osteogenesis of Bone Marrow-Derived Mesenchymal Stem Cells: Potential Applications for Bone Regeneration vol.2020, pp.None, 2013, https://doi.org/10.1155/2020/8889731
  22. Combining autologous particulate dentin, L-PRF, and fibrinogen to create a matrix for predictable ridge preservation: a pilot clinical study vol.24, pp.3, 2020, https://doi.org/10.1007/s00784-019-02922-z
  23. Maintenance of Alveolar Ridge Dimensions Utilizing an Extracted Tooth Dentin Particulate Autograft and Platelet-Rich fibrin: A Retrospective Radiographic Cone-Beam Computed Tomography Study vol.13, pp.5, 2013, https://doi.org/10.3390/ma13051083
  24. Bone Regeneration in Peri-Implant Defect Using Autogenous Tooth Biomaterial Enriched with Platelet-Rich Fibrin in Animal Model vol.10, pp.6, 2013, https://doi.org/10.3390/app10061939
  25. Effects of Targeted Delivery of Metformin and Dental Pulp Stem Cells on Osteogenesis via Demineralized Dentin Matrix under High Glucose Conditions vol.6, pp.4, 2013, https://doi.org/10.1021/acsbiomaterials.0c00124
  26. Reconstruction of the Extraction Socket vol.32, pp.4, 2020, https://doi.org/10.1016/j.coms.2020.07.010
  27. The beneficial effect of using both autogenous tooth augmentation and platelet rich-fibrin at the same time as socket preservation materials vol.4, pp.3, 2013, https://doi.org/10.23736/s2532-3466.20.00203-9
  28. The Use of Autogenous Teeth for Alveolar Ridge Preservation: A Literature Review vol.11, pp.4, 2013, https://doi.org/10.3390/app11041853
  29. Physicochemical and osteogenic properties of chairside processed tooth derived bone substitute and bone graft materials vol.40, pp.1, 2013, https://doi.org/10.4012/dmj.2019-341
  30. Acid Dentin Lysate Failed to Modulate Bone Formation in Rat Calvaria Defects vol.10, pp.3, 2013, https://doi.org/10.3390/biology10030196
  31. Retrospective Study: Lateral Ridge Augmentation Using Autogenous Dentin: Tooth-Shell Technique vs. Bone-Shell Technique vol.18, pp.6, 2013, https://doi.org/10.3390/ijerph18063174
  32. Comparison of Autogenous Tooth Materials and Other Bone Grafts vol.18, pp.3, 2013, https://doi.org/10.1007/s13770-021-00333-4
  33. Tooth shell technique: A proof of concept with the use of autogenous dentin block grafts vol.66, pp.2, 2013, https://doi.org/10.1111/adj.12814
  34. Retrospective Study on Tooth Shell Technique Using Endodontically Treated Teeth in Lateral Ridge Augmentation vol.11, pp.13, 2013, https://doi.org/10.3390/app11135882
  35. Micro-Computed Tomography Analysis on Administration of Mesenchymal Stem Cells - Bovine Teeth Scaffold Composites for Alveolar Bone Tissue Engineering vol.52, pp.None, 2013, https://doi.org/10.4028/www.scientific.net/jbbbe.52.86