Estimation of the Characteristics for the Dose Distribution in the Polymer Gel by Means of Monte Carlo Simulation

몬테카를로 시뮬레이션을 이용한 양성자 조사에 따른 Polymer Gel 내부의 선량 분포 특성 평가

  • Park, Min-Seok (Radiation Safety and Section, Korea Institute of Radiological & Medical Sciences) ;
  • Kim, Gi-Sub (Radiation Safety and Section, Korea Institute of Radiological & Medical Sciences) ;
  • Jung, Hai-Jo (Radiation Safety and Section, Korea Institute of Radiological & Medical Sciences) ;
  • Park, Se-Young (Health Physics Team, Korea Institute of Radiological & Medical Sciences) ;
  • Choi, In-Seok (Department of Radiological Sciences, Korea University) ;
  • Kim, Hyun-Ji (Department of Radiological Sciences, Korea University) ;
  • Yoon, Yong-Su (Department of Radiological Sciences, Korea University) ;
  • Kim, Jung-Min (Department of Radiological Sciences, Korea University)
  • 박민석 (한국원자력의학원 방사선의학연구소 방사선안전관리팀) ;
  • 김기섭 (한국원자력의학원 방사선의학연구소 방사선안전관리팀) ;
  • 정해조 (한국원자력의학원 방사선의학연구소 방사선안전관리팀) ;
  • 박세영 (국가방사선비상진료센터 보건물리팀) ;
  • 최인석 (고려대학교 보건과학대학 방사선학과) ;
  • 김현지 (고려대학교 보건과학대학 방사선학과) ;
  • 윤용수 (고려대학교 보건과학대학 방사선학과) ;
  • 김정민 (고려대학교 보건과학대학 방사선학과)
  • Received : 2013.04.30
  • Accepted : 2013.06.12
  • Published : 2013.06.30

Abstract

This study was the estimation of the dose distribution for proton, prompt gamma rays and proton induced neutron particles, in case of exposing the proton beam to polymer gel dosimeter and water phantom. The polymer gel dosimeter was compositeness material of Gelatin, Methacrylic acid, Hydroquinone, Tetrakis and Distilled water. The density of gel dosimeter was $1.04g/cm^3$ which was similar to water. The 72, 116 and 140 MeV proton beams were used in the simulation. Proton beam interacted with the nuclei of the phantom and the nuclei in excited states emitted prompt gamma rays and proton induced neutron particles during the process of de-excitation. The proton particles, prompt gamma rays, proton induced neutron particles were detected by polymer gel dosimeter and water phantom, respectively. The gap of the axis for gel was 2 mm. The Bragg-peak for proton particles in gel dosimeter was similar to water phantom. The dose distribution for proton and prompt gamma rays in gel dosimeter and water phantom was approximately identical in case of 72, 116 and 140 MeV for proton beam. However, in case of proton induced neutron particles for 72, 116 and 140 MeV proton beam, particles were not detected in gel dosimeter, while the Water phantom absorbed neutron particles. Considering the resulting data, gel dosimeter which was developed in the normoxic state attentively detected the dose distribution for proton beam exposure except proton induced neutron particles.

본 연구는 몬테카를로 시뮬레이션을 이용하여 양성자 빔을 피사체에 조사했을 때 발생되는 양성자, 즉발감마선 그리고 양성자 유발 중성자의 3차원적 공간분포를 polymer gel 선량계를 통해 구하고, 이를 물 팬텀에서 조사한 결과와 비교하여 3차원적 선량 분포의 정확성에 대해 알아보고자 한다. 본 연구에서 사용 된 polymer gel 선량계는 Gelatin, Methacrylic acid, Hydroquinone, Tetrakis 그리고 증류수로 이루어진 혼합물로 그 밀도는 $1.04g/cm^3$으로 물의 밀도인 $0.9998g/cm^3$과 유사하다. 본 시뮬레이션에서는 72 MeV, 116 MeV, 140 MeV 의 양성자 빔이 사용되었다. 양성자 빔은 팬텀의 핵과 반응을 하고 양성자 빔으로 인해 여기된 핵이 다시 안정하게 되기 위해 즉발감마선 그리고 양성자 유발 중성자를 방출한다. 양성자와 즉발감마선 그리고 양성자 유발 중성자는 polymer gel 선량계와 물 팬텀에서 각각 검출하였다. 3차원적 선량 분포를 얻기 위한 검출 간격은 2 mm로 하여 선량 분포를 획득하였다. Polymer gel 선량계에서의 양성자의 Bragg-peak를 구해 본 결과 Bragg-peak 지점이 물 팬텀에서의 경우와 유사하게 나타남을 확인 할 수 있었다. 72 MeV, 116 MeV, 그리고 140 MeV의 양성자 빔을 polymer gel 그리고 물 팬텀에 조사했을 때 그 내부에서의 양성자 그리고 즉발감마선의 선량 분포는 polymer gel, 물 팬텀 각각 유사한 선량분포를 가짐을 감마 인덱스 평가로 확인 할 수 있었다. 하지만 양성자 유발 중성자의 경우 물 팬텀에서는 검출이 된 반면 polymer gel 선량계에서는 검출이 되지 않았다. Polymer Gel 선량계는 3차원적 선량 분포를 얻는데 유용한 선량계이지만 양성자 조사 시 그 유발 중성자의 검출에는 한계를 보임을 확인할 수 있었다.

Keywords

References

  1. A. Boyer, M. Goitein, A. Lomax, E. Pedroni : Radiation in the Treatment of Cancer, Phys. Today, 55(9), 34-36, 2002
  2. H.Bethe : Moliere's Theory of Multiple scattering, Phys. Rev. 89, 1256-1266, 1953 https://doi.org/10.1103/PhysRev.89.1256
  3. F.M.Khan : ThePhysics of Radiation Therapy, 4th ed., Lippincott Williams & Wilkins, 54-70,2010
  4. J.H Bong : Dosimetric Characteristics of a Polymer Gel for Proton beam, Kyonggi University, 2012
  5. C.H Min, C.H Kim, M.Y Youn, J.W Kim : Prompt gamma measurements for locating the dosefall- off region in the proton therapy, Appl.Phys.Lett, 89, 183517, 2006 https://doi.org/10.1063/1.2378561
  6. C.H Min, H.R Lee, C.H Kim, S.B Lee : Development of array-type prompt gamma measurement system for in vivo range verification in proton therapy, Med Phys, 39, 2100-2108, 2012 https://doi.org/10.1118/1.3694098
  7. M.S Park, W.H Lee, J.M Kim : Estimation of proton distribution by means ofthree-dimensional reconstruction of prompt gamma rays, Appl.Phys.Lett, 97, 153705, 2010 https://doi.org/10.1063/1.3502612
  8. K. Benzion, J.M. Ronald, R. Reuven : Nuclear deexcitation gamma ray lines from acceleratedparticle interaction, Astrophys. J. Suppl. Ser, 141, 523-541, 2002 https://doi.org/10.1086/340545
  9. K.B McAuley : Fundamentals of Polymer Gel Dosimeters, 56, 35-44, 2006 https://doi.org/10.1088/1742-6596/56/1/004
  10. J.H Bong, K.S Choi, S.C Yu, S.I Kwon, Y.R Cho, C.H Park, et al. : Raman Spectroscopy ofIrradiated Normoxic Polymethacrylic Acid Gel Dosimeter, Bull. Korean Chem Soc., 32(2), 625-629, 2011 https://doi.org/10.5012/bkcs.2011.32.2.625
  11. J.H Bong, K.B Kim, T.K Yang, I.O Ko, J.A Park, K.M Kim : Dosimetric Characteristics of a Polymer Gel for a 45 MeV Proton Beam, New Physics: Sae Mulli, 62(1), 84-88, 2012 https://doi.org/10.3938/NPSM.62.84
  12. C Baldock, Y De Deene, S Doran, G Ibbott, A Jirasek, M Lepage, et al. : Polymer Geldosimetry, Phys. Med. Biol, 55, R1-R63, 2010 https://doi.org/10.1088/0031-9155/55/5/R01
  13. S.Y Chung, Y.B Kim, Y.H Kwon, S Lee : A stduy on the evaluatiion of 3D Dose distribution using Normoxic Polymer Gel, J. Korean soc. Radiotherapeutic Technol., 19(1), 7-17, 2007
  14. D A Low, W B Harms, S. Mutic, J A Purdy : A technique for the quantitative evaluation of dose distributions, Med.Phys, 25(5), 656-661, 1998 https://doi.org/10.1118/1.598248
  15. J B Scherman : Development and evaluation of method for comparison of dose distributions in radiotherapy using calculated, synthetic and simulated measured dose distributions, Lund University, 2009
  16. D Park, Y.H Kim, W.T Kim, D.W Kim, D.H Kim, H.S Jeon : A method to caculate a pass rate ofthe gamma-index Analysis in Tomotherapy delivery quality assurance (DQA), Korean Journal of medical physics, 21(4), 340-347, 2010
  17. S Handley, Y Chen, S Ahmad : Normalized Bragg Peak Curves for Various Proton Energies in aCylindrical Water Phantom: A Simulation with MCNPX and GEANT4 Monte Carlo Codes, Med.Phys,37, 3285, 2010
  18. J Uusi-Simola, S Heikkinen, P Kotiluoto, et al. : MAGIC polymer gel for dosimetric verification in boron neutron capture therapy, J.Appl. Med.Phy, 8(2), 114-123, 2007
  19. A Jirasek, C Duzenili : Relative effectiveness of polyacrylamide gel dosimeters applied toproton beams: Fourier transform Raman obsercations and track structure calcualtions, Med Phys. 29, 4, 569-577, 2002 https://doi.org/10.1118/1.1460873
  20. J Uusi-Simola, S Savolainen, A Kangasmaki, S Heikkinen, J Perkio, U Abo Ramadan, et al. :Study of the relative dose-response of BANG-3 polymer gel dosimeters in epithermal neutronirradiation, Phys.Med.Biol, 48(17), 2895-2906, 2003 https://doi.org/10.1088/0031-9155/48/17/310