Intracerebral Hemorrhage Auto Recognition in Computed Tomography Images

CT 영상에서 뇌출혈의 자동인식

  • Choi, Seok-Yoon (Department of Radiological Science, Catholic University of Pusan) ;
  • Kang, Se-Sik (Department of Radiological Science, Catholic University of Pusan) ;
  • Kim, Chang-Soo (Department of Radiological Science, Catholic University of Pusan) ;
  • Kim, Jung-Hoon (Department of Radiological Science, Catholic University of Pusan) ;
  • Kim, Dong-Hyun (Department of Radiological Science, Catholic University of Pusan) ;
  • Ye, Soo-Young (Department of Radiological Science, Catholic University of Pusan) ;
  • Ko, Seong-Jin (Department of Radiological Science, Catholic University of Pusan)
  • 최석윤 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 강세식 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 김창수 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 김정훈 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 김동현 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 예수영 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 고성진 (부산가톨릭대학교 보건과학대학 방사선학과)
  • Received : 2013.04.30
  • Accepted : 2013.06.04
  • Published : 2013.06.30

Abstract

The CT examination sometimes fail to localize the cerebral hemorrhage part depending on the seriousness and may embarrass the pathologist if he/she is not trained enough for emergencies. Therefore, an assisting role is necessary for examination, automatic and quick detection of the cerebral hemorrhage part, and supply of the quantitative information in emergencies. the computer based automatic detection and recognition system may be of a great service to the bleeding part detection. As a result of this research, we succeeded not only in automatic detection of the cerebral hemorrhage part by grafting threshold value handling, morphological operation, and roundness calculation onto the bleeding part but also in development of the PCA based classifier to screen any wrong choice in the detection candidate group. We think if we apply the new developed system to the cerebral hemorrhage patient in his critical condition, it will be very valuable data to the medical team for operation planning.

CT 검사 시 뇌출혈의 부위는 심각한 정도에 따라 인지하기 어려운 경우도 있으며, 응급상황에서 숙련이 되지 않은 의료진에게는 부담을 준다. 응급상황에서 검사와 동시에 뇌출혈부위를 자동으로 빨리 파악하고 정량적인 정보를 제공하는 보조적인 역할은 필요하며, 컴퓨터를 이용한 자동 검출 및 인식 시스템은 출혈부위 진단에 매우 큰 도움을 줄 수 있다. 본 연구에서는 출혈부위를 문턱치값 처리, 모폴로지 연산, 원형률 계산을 접목하여 뇌 출혈부위의 자동검출에 성공하였고 검출 후보군에서 잘 못 선정된 영역을 판정하기위한 주성분분석을 이용한 분류기 개발에 성공하였다. 개발된 시스템을 응급상황의 뇌출혈 환자에게 적용한다면 의료진에게 수술계획을 위한 유용한 정보가 될 것으로 사료된다.

Keywords

References

  1. Kang NK, Chun YL, Hong PH et al.: Validity of categories based on computed tomography findings for acute lobarcerebral hematoma in patients with a reuptured cerebral aneurysmcompared with that of patients with hypertensive lobar cerebral hematoma, Journal of the Korean Society of Emergency Medicine, 5(4), 254-260, 2004.
  2. Liao CC, Xiao F, Wong JM, Chiang IJ: Computer-aided diagnosis of intracranial hematoma with brain deformation on computedtomography, Computerized Medical Imaging and Graphics, 34(7), 563-571, 2010 https://doi.org/10.1016/j.compmedimag.2010.03.003
  3. Chan T: Computer aided detection of small acute intracranialhemorrhage on computer tomography of brain, Computerized MedicalImaging and Graphics, 31(4-5), 285-298, 2007 https://doi.org/10.1016/j.compmedimag.2007.02.010
  4. Kim D-H, Ko S-J, Kang S-S, Kim J-H, Kim C-S: Computer-Aided Diagnosis for Pulmonary Tuberculosis using Texture Features Analysis in Digital Chest Radiography, The Journal of the Korea Contents Association, 11(11), 185-193, 2011
  5. Park H-H, Ok C-S, Kang S-S, Ko S-J, Choi S-Y: Recognition forLung Cancer using PCA in the Digital Chest Radiography,The journal ofthe Korea Institute of Maritime Information & Communication Sciences,15(7), 1573-1582, 2011 https://doi.org/10.6109/jkiice.2011.15.7.1573
  6. Jolliffe IT: Principal component analysis. 2nd edition. Springer-Verlag, 2002
  7. Ha YH, Nam JY, Lee EJ, Lee CH: Digital Image Processing, 2nd ed., Greenpress, 2003
  8. Cho JS, Kang HS, Kim HS, Kim SD: Multimedia Signal Processing Fundamentals and Practice, SciTech, 2006
  9. Ha BC, Kwak BK, Jing J, Lim C-H, Jung H-R: Research on PerfusionCT in Rabbit Brain Tumor Model, Journal of radiological science and technology, 35(2), 165-171, 2012
  10. Ryu G-B, Kim H-S, Lyu K-Y, Dong K-R, Kweon D-C: The Assessment of Scattered Ray According to the Beam Thickness of Z-axis in MDCT(Multi Detector Computed Tomography), Journal of radiological science and technology, 33(2), 129-141, 2010