DOI QR코드

DOI QR Code

LEO Satellite Position and Velocity Coordinate Transformation Using GPS CNAV

GPS CNAV 데이터를 이용한 저궤도 위성의 위치와 속도의 좌표 변환

  • Kim, Ghang-Ho (Mechanical and Aerospace Engineering and SNU-IAMD, Seoul National University) ;
  • Kim, Chong-Won (Mechanical and Aerospace Engineering and SNU-IAMD, Seoul National University) ;
  • Kee, Chang-Don (Mechanical and Aerospace Engineering and SNU-IAMD, Seoul National University) ;
  • Choi, Su-Jin (Korea Aerospace Research Institute)
  • 김강호 (서울대학교 기계항공공학부 정밀기계설계연구소) ;
  • 김종원 (서울대학교 기계항공공학부 정밀기계설계연구소) ;
  • 기창돈 (서울대학교 기계항공공학부 정밀기계설계연구소) ;
  • 최수진 (한국항공우주연구원)
  • Received : 2013.05.21
  • Accepted : 2013.06.30
  • Published : 2013.06.30

Abstract

In this paper, ECEF to ECI coordinate transformation algorithm which uses EOP parameters in GPS civil navigation message is introduced, and ECEF to ECI coordinate transformation simulation results were analyzed. The ECEF to ECI coordinate transformation includes GPS to UTC, and UTC to other types of time conversions and EOP data processing algorithms. The ECEF to ECI coordinate conversion algorithm was certified using real LEO satellite position, velocity GPS data, and EOP data which offered by the Earth Orientation Center.

본 논문에서는 새롭게 추가될 GPS civil signal 에 실릴 civil navigation message 중에서 Earth Orientation Parameter를 이용하여 ECEF 좌표계에서의 위치를 ECI로 변환하는 알고리즘을 설명하고 시뮬레이션을 통해서 결과를 분석하였다. Civil navigation message에 실릴 예정인 EOP를 이용하기 위해서는 GPS 시간을 UTC로 변환하여야 하고 좌표 변환의 중간 단계별로 필요한 여러 종류의 시간과 EOP 데이터를 활용할 수 있어야 한다. 알고리즘의 검증은 Earth Orientation Center에서 제공하는 EOP 데이터를 GPS CNAV에 실린 가상의 EOP 데이터로 가정하고 이를 이용하여 저궤도 위성의 위치와 속도를 변환하고 그 결과를 분석하였다.

Keywords

References

  1. National Coordination Office for Space-Based Positioning, Navigation, and Timing. GPS Modernization. Available : http://www.gps.gov/systems/gps/modernization/.
  2. D. B. Goldstein ed. Global positioning system wing(GPSW) systems engineering & integration interface specification, Global Positioning Systems Wing, Technical Report IS-GPS-200E, 2010.
  3. V. David and W. McClain, Fundamentials of Astrodynamics and Applications, 3rd ed. California, Microcosm Press, 2001.
  4. B. Ben, V. David, S. Aurore and A. Penina, Earth orientation parameter considerations for precise spacecraft operations. in Proceeding of the 2011 AAS/AIAA Astrodynamics Specialist Conference, Girdwood Alaska, pp. 1-13, Jul. 2011.
  5. M. Oliver and G. Eberhard, Satellite Orbits, New York, Springer, 2005.
  6. K. Ghangho, H. Deokhwa, and others, Expected Accuracy of LEO Navigation Result Coordinate Transformation using GPS EOP Data, in Proceeding of the KGS 2012, Jeju, pp.197-198, 2012.
  7. Analytical Graphics, Inc., STKTM.
  8. U.S. Noval Observatory, Explanatory supplement to the astronomical almanac, Washington D.C., 2006.
  9. V. David, S. John and S. Kenneth, Implementation Issues Surrounding the New IAU Reference Systems for Astrodynamics, in Proceeding of the 16th AAS/AIAA Space Flight Mechanics Conference, Tampa Florida, pp. 1-22, Jan. 2006.
  10. K. George, The IAU Resolutions on Astronomical Reference Systems, Time Scales, and Earth Rotation Models, Washington, D.C., United States Naval Observatory, Oct. 2005.
  11. IERS Rapid Service/Prediction Center, EOP Product Available: http://maia.usno.navy.mil/ser7/finals2000A.daily
  12. The Earth Orientation Centre. Polar motion interpolation FORTRAN subroutine. Available: ftp://hpiers.obspm.fr/eop-pc/models/interp.f.

Cited by

  1. Implementation of Vertigo Warning function for FA-50 aircraft vol.24, pp.10, 2019, https://doi.org/10.9708/jksci.2019.24.10.001