DOI QR코드

DOI QR Code

Selection of Acid-tolerant and Hetero-fermentative Lactic Acid Bacteria Producing Non-proteinaceous Anti-bacterial Substances for Kimchi Fermentation

비단백질성 항균물질을 생산하는 김치발효용 내산성 Hetero 발효형 유산균주 선발

  • Kim, Hye-Rim (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Lee, Jong-Hoon (Department of Food Science and Biotechnology, Kyonggi University)
  • 김혜림 (경기대학교 식품생물공학과) ;
  • 이종훈 (경기대학교 식품생물공학과)
  • Received : 2012.11.20
  • Accepted : 2012.12.22
  • Published : 2013.03.28

Abstract

Twenty-three strains of Leuconostoc species and 45 strains of Weissella species inhibiting the growth of Lactobacillus sakei, one of the most populous lactic acid bacteria in over-ripened kimchi, were isolated from kimchi in our previous study. Among these hetero-fermentative 68 strains, Leuconostoc mesenteroides CK0128, Weissella cibaria CK0633, and W. cibaria KK0797 exhibited a relatively high survival rate in MRS medium, which was adjusted to pH 4.3 using an acid mixture consisting of acetic and lactic acids, and produced a large amount of exopolysaccharides. The culture supernatants of 3 strains were fractionated by a molecular weight cutter and lyophilized. The fractions with a molecular weight smaller than 3,000 Da showed antagonistic activity against Staphylococcus aureus and Lb. sakei. The anti-bacterial substances were very stable to heat treatments ($121^{\circ}C$, 15 min) and active at acidic conditions below pH 5. ${\alpha}$-Amylase, lipase, and proteolytic enzymes (proteinase K and pepsin) did not affect their activities. These non-proteinaceous anti-bacterial substances inhibited the growth of several food pathogens.

선행연구에서 김치발효 후기의 우점종으로 알려진 Lactobacillus sakei의 생육을 저해하는 Leuconostoc 속 23균주와 Weissella 속 45 균주를 김치로부터 분리, 동정하였다. 발효 후기까지 생존할 수 있는 김치발효용 hetero 발효형 종균 선발을 위하여 이들 균주에 대한 내산성을 평가한 결과, Lc. mesenteroides CK0128, W. cibaria CK0633, W. cibaria KK0797 균주가 acetic acid와 lactic acid 혼합용액을 이용하여 pH를 4.3으로 조정한 MRS broth에서 상대적으로 높은 생존율을 보였고, 다량의 세포 외 다당류를 생산하였다. 세균주가 생산하는 항균물질의 분자량은 3,000 Da 이하로 추정되며 Staphylococcus aureus와 Lb. sakei에 대한 생육저해를 나타내었다. 분획한 3,000 Da 이하의 조항균물질 모두가 $121^{\circ}C$, 15분의 열처리에도 항균활성을 유지함으로써 항균물질의 열에 대한 높은 안정성이 확인되었다. pH의 감소에 따른 항균활성의 증가가 pH 5 이하의 산성조건에서 확인되어, 이들 항균물질은 pH 5 이하의 산성조건에서 활성을 갖는 것으로 추정된다. ${\alpha}$-amylase, lipase, pepsin, proteinase K 처리가 항균활성에 아무런 영향을 미치지 않는 것으로 보아 이들 균주가 생산하는 항균물질은 탄수화물, 지질을 포함하지 않으며, 비단백질성 물질로 추정된다. 또한, 선발균주가 생산하는 비단백질성 항균물질은 식중독균의 생육을 효과적으로 저해하였다.

Keywords

References

  1. Alp, G. and B. Aslim. 2010. Relationship between the resistance to bile salts and low pH with exopolysaccharide (EPS) production of Bifidobacterium spp. isolated from infants feces and breast milk. Anaerobe 16: 101-105. https://doi.org/10.1016/j.anaerobe.2009.06.006
  2. Boke, H., B. Aslim, and G. Alp. 2010. The role of resistance to bile salts and acid tolerance of exopolysaccharides (EPSS) produced by yogurt starter bacteria. Arch. Biol. Sci. 62: 323-328. https://doi.org/10.2298/ABS1002323B
  3. Byun, M. W., B. S. Cha, J. H. Kwon, H. O. Cho, and W. J. Kim. 1989. The combined effect of heat treatment and irradiation on the inactivation of major lactic aicd bacteria associated with Kimchi fermentation. Korean J. Food Sci. Technol. 21: 109-119
  4. Chang, J. Y., H. J. Lee, and H. C. Chang. 2007. Identification of the agent from Lactobacillus plantarum KFRI464 that enhances bacteriocin production by Leuconostoc citreum GJ7. J. Appl. Microbiol. 103: 2504-2515. https://doi.org/10.1111/j.1365-2672.2007.03543.x
  5. Chang, J. Y., I. C. Kim, and H. C. Chang. 2011. Effect of solar salt on the fermentation characteristics of kimchi. Korean J. Food. Preserv. 18: 256-265.
  6. Cho, J., D. Lee, C. Yang, J. Jeon, J. Kim, and H. Han. 2006. Microbial population dynamics of kimchi, a fermented cabbage product. FEMS Microbiol. Lett. 257: 262-267. https://doi.org/10.1111/j.1574-6968.2006.00186.x
  7. Cho, S. J. and H. D. Yun. 2005. Identification and molecular characterization of three isoforms of iturin produced by endophytic Bacillus sp. CY22. J. Life Sci. 15: 1005-1012. https://doi.org/10.5352/JLS.2005.15.6.1005
  8. Cho, Y. and H. Rhee. 1991. Effect of lactic acid bacteria and temperature on kimchi fermentation (II). Korean J. Soc. Food Sci. 7: 89-95.
  9. Cleveland, J., T. J. Montville, I. F. Nes, and M. L. Chikindas. 2001. Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71: 1-20. https://doi.org/10.1016/S0168-1605(01)00560-8
  10. Eom, H. J., D. M. Seo, and N. S. Han. 2007. Selection of psychrotrophic Leuconostoc spp. producing highly active dextransucrase from lactate fermented vegetables. Int. J. Food Microbiol. 117: 61-67. https://doi.org/10.1016/j.ijfoodmicro.2007.02.027
  11. Gänzle, M. G., A. Höltzel, J. Walter, G. Jung, and W. P. Hammes. 2000. Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl. Environ. Microbiol. 66: 4325-4333. https://doi.org/10.1128/AEM.66.10.4325-4333.2000
  12. Grill, J. P., C. Manginot-Dürr, F. Schneider, and J. Ballongue. 1995. Bifidobacteria and probiotic effects: action of Bifidobacterium species on conjugated bile salts. Curr. Microbiol. 31: 23-27. https://doi.org/10.1007/BF00294629
  13. Ha, D. and D. Cha. 1994. Novel starter culture for kimchi, using bacteriocin-producing Enterococcus faecium strain. Korean J. Appl. Microbiol. Biotechnol. 22: 550-556.
  14. Jin, H. S., J. B. Kim, Y. J. Yun, and K. J. Lee. 2008. Selection of kimchi starters based on the microbial composition of kimchi and their effects. J. Korean Soc. Food Sci. Nutr. 37: 671-675. https://doi.org/10.3746/jkfn.2008.37.5.671
  15. Jung, J. Y., S. H. Lee, J. M. Kim, M. S. Park, J. W. Bae, Y. Hahn, E. L. Madsen, and C. O. Jeon. 2011. Metagenomic analysis of kimchi, a traditional Korean fermented food. Appl. Environ. Mcrobiol. 77: 2264-2274. https://doi.org/10.1128/AEM.02157-10
  16. Kandler, O. 1983. Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 49: 209-224. https://doi.org/10.1007/BF00399499
  17. Kang, S., W. Yang, Y. Kim, E. Joung, and Y. Han. 1995. Strain improvement of Leuconostoc mesenteroides for Kimchi fermentation and effect of starter. Korean J. Appl. Microbiol. Biotechnol. 23: 461-471.
  18. Kim, D. H., K. R. Kang, H. W. Kim, S. Y. Yoon, C. G. Kim, T. Yamaguchi, J. K. Sohng, and J. S. Kang. 2010. Structure determination of macrolactin compounds with antibacterial activities isolated from Bacillus polyfermenticus KJS-2. J. Life Sci. 20: 1792-1800. https://doi.org/10.5352/JLS.2010.20.12.1792
  19. Kim, D.-H. and Y. S. Hahn. 2003. Effect of addition of ethanol and organic acids on the quality of Mul-kimchi. J. East Asian Soc. Dietary Life 13: 305-312.
  20. Kim, D. J. and S. Y. Lee. 2001. Isolation of the exopolysaccharide producing Enterobacter sp. and physicochemical properties of the polysaccharide produced by this strain. Korean J. Biotechnol. Bioeng. 16: 370-375.
  21. Kim, H. J. and H. C. Chang. 2006. Isolation and characterization of the exopolysaccharide-producing lactic acid bacteria from kimchi. Korean J. Microbiol. Biotechnol. 34: 196-203.
  22. Kim, S. 2001. Difficulty in Korean kimchi industry for modernization. Food Indus. Nutr. 6: 34-37.
  23. Kim, Y. C., E. Y. Jung, E. H. Kim, D. H. Jung, T. B. Choe, T. J. Kwon, and S. M. Kang. 1998. Acid tolerance of the acid resistant mutant of Leuconostoc paramesenteroides improved for kimchi starter. Korean J. Appl. Microbiol. Biotechnol. 26: 275-282.
  24. Kim, Y. C., E. Y. Jung, H. J. Kim, D. H. Jung, S. G. Hong, T. J. Kwon, and S. M. Kang. 1999. Improvement of kimchi fermentation by using acid-tolerant mutant of Leuconostoc mesenteroides and aromatic yeast Saccharomyces fermentati as starters. J. Microbiol. Biotechnol. 9: 22-31.
  25. Kim, Y. H., H. Z. Kim, J. Y. Kim, T. B. Choi, and S. M. Kang. 2005. Strain improvement of Leuconostoc mesenteroides as a acid-resistant mutant and effect on Kimchi fermentation as a starter. Korean J. Appl. Microbiol. Biotechnol. 33: 41-50.
  26. Kumar, C. G. and S. K. Anand. 1998. Significance of microbial biofilms in food industry: a review. Int. J. Food Microbiol. 42: 9-27. https://doi.org/10.1016/S0168-1605(98)00060-9
  27. Lee, C., C. Ko, and D. Ha. 1992. Microfloral changes of the lactic acid bacteria during kimchi fermentation and identification of the isolates. Korean J. Appl. Microbiol. Biotechnol. 20: 102-109.
  28. Lee, J. H. 2009. Current studies on the community of lactic acid bacteria in kimchi, a traditional korean fermented food. Milk Sci. 58: 153-159.
  29. Lee, K. and J. H. Lee. 2011. Isolation of Leuconostoc and Weissella species inhibiting the growth of Lactobacillus sakei from kimchi. Korean J. Microbiol. Biotechnol. 39: 175-181.
  30. Lee, K. and Y. Lee. 2010. Effect of Lactobacillus plantarum as a starter on the food quality and microbiota of kimchi. Food Sci. Biotechnol. 19: 641-646. https://doi.org/10.1007/s10068-010-0090-2
  31. Lee, M. and J. H. Lee. 2009. Detection of pediococci in kimchi using pediococci selective medium. Korean J. Microbiol. Biotechnol. 37: 238-242.
  32. Lee, M., K. H. Cho, and J. H. Lee. 2010. Application of 16S rDNA PCR-RFLP analysis for the rapid identification of Weissella species. Korean J. Microbiol. Biotechnol. 38: 455-460.
  33. Looijesteijn, P. J., L. Trapet, E. de Vries, T. Abee, and J. Hugenholtz. 2001. Physiological function of exopolysaccharides produced by Lactococcus lactis. Int. J. Food Microbiol. 64: 71-80. https://doi.org/10.1016/S0168-1605(00)00437-2
  34. Mheen, T. I. and T. W. Kwon. 1984. Effect of temperature and salt concentration on kimchi fermentation. Korean J. Food Sci. Technol. 16: 443-450.
  35. Moon, G. S., C. H. Kang, Y. R. Pyun, and W. J. Kim. 2004. Isolation, identification, and characterization of a bacteriocin-producing Enterococcus sp. from kimchi and its application to kimchi fermentation. J. Microbiol. Biotechnol. 14: 924-931.
  36. Niku-Paavola, M. L., A. Laitila, T. Mattila-Sandholm, and A. Haikara. 1999. New types of antimicrobial compounds produced by Lactobacillus plantarum. J. Appl. Microbiol. 86: 29-35. https://doi.org/10.1046/j.1365-2672.1999.00632.x
  37. Park, H., Y. Kim, and S. Yoon. 1994. The effect of blanching and lactic acid bacterial inoculation on the quality of kimchi. Korean J. Soc. Food Sci. 9: 61-66.
  38. Park, I. K., S. H. Kim, and S. D. Kim. 1996. Effect of organic acids addition during salting on the fermentation of Kimchi. J. East Asian Soc. Dietary Life 6: 195-204.
  39. Park, K. J. and S. J. Woo. 1988. Effect of Na-acetate, Namalate and K-sorbate on the pH, acidity and sourness during Kimchi fermentation. Korean J. Food Sci. Technol. 20: 40-44.
  40. Ruas-Madiedo, P., J. Hugenholtz, and P. Zoon. 2002. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int. Dairy J. 12: 163-171. https://doi.org/10.1016/S0958-6946(01)00160-1
  41. Shim, S. and J. H. Lee. 2008. Evaluation of lactic acid bacterial community in kimchi using terminal-restriction fragment length polymorphism analysis. Korean J. Microbiol. Biotechnol. 36: 247-259.
  42. So, M., M. Shin, and Y. Kim. 1996. Effects of psychrotrophic lactic acid bacterial starter on kimchi fermentation. Korean J. Food Sci. Technol. 28: 806-813.
  43. Talarico, T., I. Casas, T. C. Chung, and W. Dobrogosz. 1988. Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob. Agents Chemother. 32: 1854-1858. https://doi.org/10.1128/AAC.32.12.1854
  44. Yang, E. J. and H. C. Chang. 2008. Antifungal activity of Lactobacillus plantarum isolated from kimchi. Korean J. Microbiol. Biotechnol. 36: 276-284.
  45. Yang, E. J. and H. C. Chang. 2010. Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. Int. J. Food Microbiol. 139: 56-63. https://doi.org/10.1016/j.ijfoodmicro.2010.02.012

Cited by

  1. 절임 배추와 양념소가 김치 발효에 미치는 영향 vol.43, pp.7, 2014, https://doi.org/10.3746/jkfn.2014.43.7.1081
  2. 전통주 양조에 적합한 Lactobacillus brevis JBE 30 균주의 특성 vol.50, pp.3, 2013, https://doi.org/10.7845/kjm.2014.4065
  3. Starter Cultures for Kimchi Fermentation vol.25, pp.5, 2013, https://doi.org/10.4014/jmb.1501.01019
  4. Identification of Antifungal Substances of Lactobacillus sakei subsp. ALI033 and Antifungal Activity against Penicillium brevicompactum Strain FI02 vol.21, pp.1, 2013, https://doi.org/10.3746/pnf.2016.21.1.52
  5. Effect of inoculation of Lactobacillus plantarum isolated from swine feces on fermentation characteristics of hulless barley vol.44, pp.4, 2013, https://doi.org/10.7744/kjoas.20170071
  6. Quality and Lactic Acid Bacteria Diversity of Pork Salami Containing Kimchi Powder vol.38, pp.5, 2018, https://doi.org/10.5851/kosfa.2018.e24
  7. Effect of pasteurization on delayed kimchi ripening and regression analysis for shelf life estimation of kimchi vol.7, pp.2, 2019, https://doi.org/10.1002/fsn3.915
  8. Microbial community analysis of viable cells and genomes in kyejang, a traditional Korean fermented beverage vol.141, pp.None, 2013, https://doi.org/10.1016/j.lwt.2021.110956