References
- Amanullah, A., C. McFarlane, A. Emery, and A. Nienow. 2001. Scale - down model to simulate spatial pH variations in large - scale bioreactors. Biotechnol. Bioeng. 73: 390-399. https://doi.org/10.1002/bit.1072
- Asaka, O. and M. Shoda. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 62: 4081-4085.
- Bernheimer, A. and L. S. Avigad. 1970. Nature and properties of a cytolytic agent produced by Bacillus subtilis. J. Gen. Microbiol. 61: 361. https://doi.org/10.1099/00221287-61-3-361
- Chen, H. C. 1996. Optimizing the concentrations of carbon, nitrogen and phosphorus in a citric acid fermentation with response surface method. Food Biotechnol. 10: 13-27. https://doi.org/10.1080/08905439609549898
- Cooper, D. G. and J. D. Sheppard. 1991. The response of Bacillus subtilis ATCC 21332 to manganese during continuous- phased growth. Appl. Microbiol. Biotechnol. 35: 72-76.
- Finking, R. and M. A. Marahiel. 2004. Biosynthesis of nonribosomal peptides 1. Annu. Rev. Microbiol. 58: 453-488. https://doi.org/10.1146/annurev.micro.58.030603.123615
- Heerklotz, H. and J. Seelig. 2007. Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. Eur. Biophysics J. 36: 305-314. https://doi.org/10.1007/s00249-006-0091-5
- Hutadilok-Towatana, N., A. Painupong, and P. Suntinanalert. 1999. Purification and characterization of an extracellular protease from alkaliphilic and thermophilic Bacillus sp. PS719. J. Biosci. Bioeng. 87: 581-587.
- Marks, E. 1968. Profile analysis in a two-way classification problem. Multivar. Behav. Res. 3: 95-106. https://doi.org/10.1207/s15327906mbr0301_6
- Miethke, M., H. Westers, E. J. Blom, O. P. Kuipers, and M. A. Marahiel. 2006. Iron starvation triggers the stringent response and induces amino acid biosynthesis for bacillibactin production in Bacillus subtilis. J. Bacteriol. 188: 8655-8657. https://doi.org/10.1128/JB.01049-06
- Mizumoto, S., M. Hirai, and M. Shoda. 2006. Production of lipopeptide antibiotic iturin A using soybean curd residue cultivated with Bacillus subtilis in solid-state fermentation. Appl. Microbiol. Biotechnol. 72: 869-875. https://doi.org/10.1007/s00253-006-0389-3
- Ongena, M. and P. Jacques. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trend. Microbiol. 16: 115-125. https://doi.org/10.1016/j.tim.2007.12.009
- Pareek, N., R. P. Singh, and S. Ghosh. 2011. Optimization of medium composition for enhanced chitin deacetylase production by mutant Penicillium oxalicum SAE (M)-51 using response surface methodology under submerged fermentation. Process Biochem. 46: 1693-1697. https://doi.org/10.1016/j.procbio.2011.05.002
- Quentin, M., F. Besson, F. Peypoux, and G. Michel. 1982. Action of peptidolipidic antibiotics of the iturin group on erythrocytes: Effect of some lipids on hemolysis. Biochimica et Biophysica Acta (BBA)-Biomembranes. 684: 207-211. https://doi.org/10.1016/0005-2736(82)90007-4
- Rado, T. A. and J. A. Hoch. 1973. Phosphotransacetylase from Bacillus subtilis: purification and physiological studies. Biochimica et Biophysica Acta (BBA)-Enzymology. 321: 114-125. https://doi.org/10.1016/0005-2744(73)90065-X
- Shih, I.-L., C.-Y. Lin, J.-Y. Wu, and C. Hsieh. 2009. Production of antifungal lipopeptide from Bacillus subtilis in submerged fermentation using shake flask and fermentor. Korean J. Chem. Eng. 26: 1652-1661. https://doi.org/10.1007/s11814-009-0237-0
- Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
- Ujita, S. and K. Kimura. 1982. Glucose-6-phosphate dehydrogenase, vegetative and spore Bacillus subtilis. Methods in Enzymol. 89: 258-261. https://doi.org/10.1016/S0076-6879(82)89046-0
- Wei, Y. H., L. F. Wang, and J. S. Chang. 2004. Optimizing iron supplement strategies for enhanced surfactin production with Bacillus subtilis. Biotechnol. Progr. 20: 979-983. https://doi.org/10.1021/bp030051a
- Wu, A.-L., T. Chen, Y. Gan, X. Chen, and X.-M. Zhao. 2007. Optimization of riboflavin production by recombinant Bacillus subtilis RH44 using statistical designs. Appl. Microbiol. Biotechnol. 76: 783-794. https://doi.org/10.1007/s00253-007-1049-y
Cited by
- Optimization of Surfactin Production by Bacillus amyloliquefaciens MD4-12 Using Response Surface Methodology vol.9, pp.3, 2015, https://doi.org/10.5454/mi.9.3.4
- Biosurfactants during in situ bioremediation: factors that influence the production and challenges in evalution vol.24, pp.26, 2013, https://doi.org/10.1007/s11356-017-9778-7
- Screening concepts, characterization and structural analysis of microbial-derived bioactive lipopeptides: a review vol.37, pp.3, 2017, https://doi.org/10.3109/07388551.2016.1163324
- Characterization of Milkisin, a Novel Lipopeptide With Antimicrobial Properties Produced By Pseudomonas sp. UCMA 17988 Isolated From Bovine Raw Milk vol.9, pp.None, 2013, https://doi.org/10.3389/fmicb.2018.01030
- Biosurfactant production: emerging trends and promising strategies vol.126, pp.1, 2013, https://doi.org/10.1111/jam.14057
- Influence of Phenotypic Dissociation in Bacillus subtilis Strain ET-1 on Iturin A Production vol.76, pp.12, 2019, https://doi.org/10.1007/s00284-019-01764-y