References
- Chang AB, Lin R, Keith Studley W, Tran CV, Saier MH Jr. Phylogeny as a guide to structure and function of membrane transport proteins. Mol Membr Biol 2004;21:171-181. https://doi.org/10.1080/09687680410001720830
- Wipf D, Ludewig U, Tegeder M, Rentsch D, Koch W, Frommer WB. Conservation of amino acid transporters in fungi, plants and animals. Trends Biochem Sci 2002;27:139-147. https://doi.org/10.1016/S0968-0004(01)02054-0
- Rentsch D, Schmidt S, Tegeder M. Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett 2007;581:2281-2289. https://doi.org/10.1016/j.febslet.2007.04.013
- Ortiz-Lopez A, Chang H, Bush DR. Amino acid transporters in plants. Biochim Biophys Acta 2000;1465:275-280. https://doi.org/10.1016/S0005-2736(00)00144-9
- Chang HC, Bush DR. Topology of NAT2, a prototypical example of a new family of amino acid transporters. J Biol Chem 1997;272:30552-30557. https://doi.org/10.1074/jbc.272.48.30552
- Chen L, Bush DR. LHT1, a lysine- and histidine-specific amino acid transporter in arabidopsis. Plant Physiol 1997;115:1127-1134. https://doi.org/10.1104/pp.115.3.1127
- Frommer WB, Hummel S, Riesmeier JW. Expression cloning in yeast of a cDNA encoding a broad specificity amino acid permease from Arabidopsis thaliana. Proc Natl Acad Sci U S A 1993;90:5944-5948. https://doi.org/10.1073/pnas.90.13.5944
- Hsu LC, Chiou TJ, Chen L, Bush DR. Cloning a plant amino acid transporter by functional complementation of a yeast amino acid transport mutant. Proc Natl Acad Sci U S A 1993;90:7441-7445. https://doi.org/10.1073/pnas.90.16.7441
- Tegeder M, Rentsch D. Uptake and partitioning of amino acids and peptides. Mol Plant 2010;3:997-1011. https://doi.org/10.1093/mp/ssq047
- Fischer WN, Kwart M, Hummel S, Frommer WB. Substrate specificity and expression profile of amino acid transporters (AAPs) in Arabidopsis. J Biol Chem 1995;270:16315-16320. https://doi.org/10.1074/jbc.270.27.16315
- Svennerstam H, Ganeteg U, Nasholm T. Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease 5. New Phytol 2008;180:620-630. https://doi.org/10.1111/j.1469-8137.2008.02589.x
- Hirner A, Ladwig F, Stransky H, Okumoto S, Keinath M, Harms A, Frommer WB, Koch W. Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell2006;18:1931-1946.
- Lee YH, Tegeder M. Selective expression of a novel high-affinity transport system for acidic and neutral amino acids in the tapetum cells of Arabidopsis flowers. Plant J 2004;40:60-74. https://doi.org/10.1111/j.1365-313X.2004.02186.x
- Liu G, Ji Y, Bhuiyan NH, Pilot G, Selvaraj G, Zou J, Wei Y. Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis. Plant Cell 2010;22:3845-3863. https://doi.org/10.1105/tpc.110.079392
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876-4882. https://doi.org/10.1093/nar/25.24.4876
- Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389-3402. https://doi.org/10.1093/nar/25.17.3389
- Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 2007;24:1596-1599. https://doi.org/10.1093/molbev/msm092
- Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008;3:1101-1108. https://doi.org/10.1038/nprot.2008.73
- Liang Y, Zhao S, Zhang X. Antisense suppression of cycloartenol synthase results in elevated ginsenoside levels in Panax ginseng hairy roots. Plant Mol Biol Rep 2009;27:298-304. https://doi.org/10.1007/s11105-008-0087-7
- Thanh NT, Murthy HN, Yu KW, Hahn EJ, Paek KY. Methyl jasmonate elicitation enhanced synthesis of ginsenoside by cell suspension cultures of Panax ginseng in 5-l balloon type bubble bioreactors. Appl Microbiol Biotechnol 2005;67:197-201. https://doi.org/10.1007/s00253-004-1759-3
- Rentsch D, Hirner B, Schmelzer E, Frommer WB. Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant. Plant Cell 1996;8:1437-1446. https://doi.org/10.1105/tpc.8.8.1437
- Kim YJ, Lee OR, Lee S, Kim KT, Yang DC. Isolation and characterization of a theta glutathione S-transferase gene from Panax ginseng Meyer. J Ginseng Res 2012;36:449-460. https://doi.org/10.5142/jgr.2012.36.4.449
- Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 2002;53:247-273. https://doi.org/10.1146/annurev.arplant.53.091401.143329
- Farmer EE, Ryan CA. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci U S A 1990;87:7713-7716. https://doi.org/10.1073/pnas.87.19.7713
- Moons A. Transcriptional profiling of the PDR gene family in rice roots in response to plant growth regulators, redox perturbations and weak organic acid stresses. Planta 2008;229:53-71. https://doi.org/10.1007/s00425-008-0810-5
- Chinnusamy V, Zhu J, Zhu JK. Salt stress signaling and mechanisms of plant salt tolerance. Genet Eng (N Y) 2006;27:141-177. https://doi.org/10.1007/0-387-25856-6_9
- Svennerstam H, Jamtgard S, Ahmad I, Huss-Danell K, Nasholm T, Ganeteg U. Transporters in Arabidopsis roots mediating uptake of amino acids at naturally occurring concentrations. New Phytol 2011;191:459-467. https://doi.org/10.1111/j.1469-8137.2011.03699.x
Cited by
- Regulation of amino acid metabolic enzymes and transporters in plants vol.65, pp.19, 2014, https://doi.org/10.1093/jxb/eru320
- Scutellarein Reduces Inflammatory Responses by Inhibiting Src Kinase Activity vol.19, pp.5, 2015, https://doi.org/10.4196/kjpp.2015.19.5.441
- Arabidopsis AMINO ACID PERMEASE1 Contributes to Salt Stress-Induced Proline Uptake from Exogenous Sources vol.8, pp.1664-462X, 2017, https://doi.org/10.3389/fpls.2017.02182
- The Dietary Flavonoid Kaempferol Mediates Anti-Inflammatory Responses via the Src, Syk, IRAK1, and IRAK4 Molecular Targets vol.2015, pp.None, 2013, https://doi.org/10.1155/2015/904142
- Transcriptome analysis of creeping bentgrass exposed to drought stress and polyamine treatment vol.12, pp.4, 2017, https://doi.org/10.1371/journal.pone.0175848
- Protium javanicum Burm. Methanol Extract Attenuates LPS-Induced Inflammatory Activities in Macrophage-Like RAW264.7 Cells vol.2019, pp.None, 2013, https://doi.org/10.1155/2019/2910278
- Abscisic Acid Regulates the 3-Hydroxy-3-methylglutaryl CoA Reductase Gene Promoter and Ginsenoside Production in Panax quinquefolium Hairy Root Cultures vol.20, pp.6, 2013, https://doi.org/10.3390/ijms20061310
- Genome-wide identification and expression analysis of the AAAP family in Medicago truncatula vol.147, pp.2, 2013, https://doi.org/10.1007/s10709-019-00062-6
- Amino Acid Transporters in Plants: Identification and Function vol.9, pp.8, 2013, https://doi.org/10.3390/plants9080972
- Organic nitrogen nutrition: LHT1.2 protein from hybrid aspen (Populus tremula L. x tremuloides Michx) is a functional amino acid transporter and a homolog of Arabidopsis LHT1 vol.41, pp.8, 2021, https://doi.org/10.1093/treephys/tpab029
- Identification, systematic evolution and expression analyses of the AAAP gene family in Capsicum annuum vol.22, pp.1, 2013, https://doi.org/10.1186/s12864-021-07765-1