DOI QR코드

DOI QR Code

회전하는 수조에서 나타나는 순압성 소용돌이의 패턴과 트라이폴라 소용돌이의 구조적 회전

Patterns of Barotropic Vortex in a Rotating Fluid and the Structural Rotation of Tripolar Vortex

  • 투고 : 2013.03.21
  • 심사 : 2013.05.03
  • 발행 : 2013.06.30

초록

회전하는 수조에서 나타나는 순압성 소용돌이의 패턴과 구조 회전에 대한 연구를 수행하였다. 소용돌이는 수면 위에 접촉된 원판을 수조에 대해 상대적으로 회전시키는 방법을 통해 만들어졌다. 회전원판의 크기, 회전방향, 회전속력에 따라 트라이폴라 소용돌이, 삼각형 소용돌이, 사각형 소용돌이, 커다란 원형 소용돌이가 안정하게 나타났고, 모양이 계속 변하는 불안정한 소용돌이도 나타났다. 회전원판과 수조 벽 사이의 간격이 안정한 소용돌이의 패턴에 큰 영향을 주었고 불안정한 소용돌이는 원판이 시계방향으로 빠르게 회전할 때 주로 나타났는데, 그 원인은 원심력적 불안정성이었다. 한편, 트라이폴라 소용돌이에서 나타난 전체 패턴의 구조적 회전 각속도는 원판 가장자리의 선속도에 비례하였고, 고기압성 트라이폴라 소용돌이가 저기압성 보다 더 큰 구조 회전 각속도를 가졌다. 로스비 수와 구조회전의 관점에서 볼 때, 해양에서 발견된 트라이폴라 소용돌이와 본 실험에서 나타난 트라이폴라 소용돌이는 유사하였다.

In this study, the patterns of barotropic vortices and their structural rotation were investigated through laboratory experiments. Both stable and unstable barotropic vortices were formed in a rotating water tank with a rotating circular plate depending on the diameter, direction, and speed of rotating circular plate. The patterns of stable vortices turned out to be tripolar, triangular, rectangular, and monopolar vortex. These vortex patterns were affected by the gap between the circular plate and the wall of the water tank. Many unstable vortices were formed by anticyclonically and highly rotating circular plate. These results were caused by the centrifugal instability. The structural angular velocity of the tripolar vortex increased with the tangential velocity of the circular plate. The anticyclonic tripolar vortex had higher structural angular velocity than the cyclonic vortex. The tripolar vortex in the water tank was very similar with the real oceanic tripolar vortex from the view point of the Rossby number and the structural rotation.

키워드

참고문헌

  1. Beckers, M. and Heijst, G.J.F. van, 1998, The observation of a triangular vortex in a rotating fluid, Fluid dynamics research, 22, 265-279. https://doi.org/10.1016/S0169-5983(97)00039-7
  2. Carnevale, G.F. and Kloosterziel, R.C., 1994, Emergence and evolution of triangular vortices, Journal of fluid mechanics, 259, 305-331. https://doi.org/10.1017/S0022112094000157
  3. Flierl, G.R., 1988, On the instability of geostrophic vortices, Journal of fluid mechanics, 197, 349-388. https://doi.org/10.1017/S0022112088003283
  4. Flor, J.B. and Heijst, G.J.F. van, 1996, Stable and unstable monopolar vortices in a stratified fluid, Journal of fluid mechanics, 311, 257-287. https://doi.org/10.1017/S0022112096002595
  5. Heijst, G.J.F. van and Clercx, H.J.H., 2009, Laboratory modeling of geophysical vortices, Annual reviews of fluid mechanics, 41, 143-164. https://doi.org/10.1146/annurev.fluid.010908.165207
  6. Heijst, G.J.F. van and Kloosterziel, R.C., 1989, Tripolar vortices in a rotating fluid, Nature, 338, 569-571. https://doi.org/10.1038/338569a0
  7. Heijst, G.J.F. van, Kloosterziel, R.C., and Williams, C.W.M., 1991, Laboratory experiments on the tripolar vortex in a rotating fluid, Journal of fluid mechanics, 225, 302-331.
  8. Holton, J.R., 2004, An introduction to dynamic meteorology, Academic Press, USA, 535 p.
  9. Jang, S.H., Shin, J.S., and Moon, B.K., 2010, Development of apparatus and methods for understanding the dynamics of the western boundary current, Journal of korean earth science society, 31, 88-94. (in Korean) https://doi.org/10.5467/JKESS.2010.31.1.088
  10. Kloosterziel, R.C. and Heijst, G.J.F. van, 1991, An experimental study of unstable barotropic vortices in a rotating fluid, Journal of fluid mechanics, 223, 1-24. https://doi.org/10.1017/S0022112091001301
  11. Lee, S.H., Park, G.S., and Kim, H.S., 2006, Development of a set of an experimental equipment of westerly wave for high school, Journal of korean earth science society, 27, 177-187. (in Korean)
  12. Marshall, J. and Plumb, R.A., 2008, Atmosphere, ocean, and climate dynamics: An introductory text, Academic Press, China, 319 p.
  13. Niino, H. and Misawa, N., 1984, An experimental and theoretical study of barotropic instability, Journal of the atmospheric sciences, 41, 1992-2011. https://doi.org/10.1175/1520-0469(1984)041<1992:AEATSO>2.0.CO;2
  14. Olson, D.B., 1991, Rings in the ocean, Annual reviews of earth and planetary sciences, 19, 283-311. https://doi.org/10.1146/annurev.ea.19.050191.001435
  15. Orlandi, P. and Heijst, G.J.F. van, 1992, Numerical simulation of tripolar vortices in 2D flow, Fluid dynamics research, 9, 179-206. https://doi.org/10.1016/0169-5983(92)90004-G
  16. Pingree, R.D. and Cann, B. le, 1992, Three anticyclonic slope water oceanic eDDIES (SWODDIES) in the southern bay of Biscay in 1990, Deep-sea research, 39, 1147-1175. https://doi.org/10.1016/0198-0149(92)90062-X
  17. Wie, J.E, Jang, S.H., and Moon, B.K., 2012, Development of an experimental method for understanding the effect of the Coriolis force on the typhoon genesis and its movement, Journal of korean earth science society, 33, 544-553. (in Korean) https://doi.org/10.5467/JKESS.2012.33.6.544