DOI QR코드

DOI QR Code

Photocatalytic Activity of Electrospun PAN/TiO2 Nanofibers in Dye Photodecomposition

  • Ji, Byung Chul (Department of Textile System Engineering, Kyungpook National University) ;
  • Bae, Sang Su (Department of Textile System Engineering, Kyungpook National University) ;
  • Rabbani, Mohammad Mahbub (Department of Bio-fibers and Materials Science, Kyungpook National University) ;
  • Yeum, Jeong Hyun (Department of Bio-fibers and Materials Science, Kyungpook National University)
  • Received : 2013.01.24
  • Accepted : 2013.06.17
  • Published : 2013.06.27

Abstract

Poly(acrylonitrile) (PAN) nanofibers containing different amounts of titanium dioxide ($TiO_2$) have been prepared by electrospinning technique. Photocatalytic activity of these electrospun PAN/$TiO_2$ nanofibers and the effect of $TiO_2$ content on the photocatalytic efficiency of PAN/$TiO_2$ nanofibers have been evaluated by monitoring the photodecomposition of fluorescein dye, rhodamine B and methylene blue under UV irradiation with respect to irradiation time. Moreover, the effect of hydrogen peroxide ($H_2O_2$) on the photocatalytic behavior of PAN/$TiO_2$ nanofibers has also been investigated. The results showed that PAN/$TiO_2$ nanofibers are effective photocatalyst and their photocatalytic efficiency increases with the increase of $TiO_2$ content in the PAN/$TiO_2$ nanofibers. It is also observed that the presence of $H_2O_2$ significantly enhances the photocatalytic ability of PAN/$TiO_2$ nanofibers. The morphology and the photocatalytic behavior of the PAN/$TiO_2$ nanofibers containing different amounts of $TiO_2$ nanoparticles have been investigated by field-emission scanning electron microscopy (FE-SEM) and UV/Visible spectroscopy, respectively.

Keywords

References

  1. X. Chen and S. S. Mao, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications and Applications, Chemical Reviews, 107(7), 2891(2007). https://doi.org/10.1021/cr0500535
  2. A. L. Linsebigler, G. Lu, and J. T. Yates, Photocatalysis on $TiO_2$ Surfaces: Principles, Mechanisms, and Selected Results, Chemical Reviews, 95(3), 735(1995). https://doi.org/10.1021/cr00035a013
  3. K. Shankar, J. I. Basham, and N. K. Allam, Recent Advances In the Use of $TiO_2$ Nanotube and Nanowire Arrays for Oxidative Photoelectro Chemistry, J. Physical Chemistry C, 113(16), 6327(2009). https://doi.org/10.1021/jp809385x
  4. J. S. Im, M. I. Kim, and Y. S. Lee, Preparation of PAN-based Electrospun Nanofiber Webs Containing $TiO_2$ for Photocatalytic Degradation, Materials Letters, 62(21-22), 3652(2008). https://doi.org/10.1016/j.matlet.2008.04.019
  5. J. Li, W. Ma, C. Chen, J. Zhao, H. Zhu, and X. Gao, Photodegradation of Dye Pollutants on One-dimensional $TiO_2$ Nanoparticles under UV and Visible Irradiation, J. Molecular Catalysis A: Chemical, 261(1), 131(2007). https://doi.org/10.1016/j.molcata.2006.08.018
  6. S. H. Hwang, C. Kim, and J. Jang, $SnO_2$ Nanoparticle Embedded $TiO_2$ Nanofibers - Highly Efficient Photocatalyst for the Degradation of Rhodamine B, Catalysis Communications, 12(11), 1037(2011). https://doi.org/10.1016/j.catcom.2011.02.024
  7. P. Wilhelm and D. Stephan, Photodegradation of Rhodamine B in Aqueous Solution via $SiO_2$@ $TiO_2$ Nano-spheres, J. Photochemistry and Photobiology A: Chemistry, 185(1), 19(2007). https://doi.org/10.1016/j.jphotochem.2006.05.003
  8. C. Prahsarn, W. Klinsukhon, and N. Roungpaisan, Electrospinning of PAN/DMF/$H_2O$ Containing $TiO_2$ and Photocatalytic Activity of their Webs, Materials Letters, 65(15-16), 2498(2011). https://doi.org/10.1016/j.matlet.2011.05.018
  9. S. K. Nataraj, K. S. Yang, and T. M. Aminabhavi, Polyacrylonitrile-based Nanofibers - A State of the Art Review, Progress in Polymer Science, 37(3), 487(2012). https://doi.org/10.1016/j.progpolymsci.2011.07.001
  10. H. Hou, J. J. Ge, J. Zeng, Q. Li, D. H. Reneker, A. Greiner, and S. Z. D. Cheng, Electrospun Polyacrylonitrile Nanofibers Containing a High Concentration of Well-aligned Multiwall Carbon Nanotubes, Chem. Mater., 17(5), 967(2005). https://doi.org/10.1021/cm0484955
  11. T. J. Sill and H. A. Recum, Electrospinning: Applications in Drug Delivery and Tissue Engineering, Biomaterials, 29(13), 1989(2008). https://doi.org/10.1016/j.biomaterials.2008.01.011
  12. D. H. Reneker and I. Chun, Nanometer Diameter Fibres of Polymer, Produced by Electrospinning, Nanotechnology, 7(3), 216(1996). https://doi.org/10.1088/0957-4484/7/3/009
  13. D. Li and Y. Xia, Electrospinning of Nanofibers: Reinventing the Wheel, Adv. Mater., 16(14), 1151(2004). https://doi.org/10.1002/adma.200400719
  14. X. J. Han, Z. M. Huang, C. L. He, L. Liu, X. J. Han, and Q. S. Wu, Coaxial Electrospinning of PC(shell)/PU(core) Composite Nanofibers for Textile Application, Polym. Composite., 27(4), 381(2006). https://doi.org/10.1002/pc.20194
  15. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, A Review on Polymer Nanofibers by Electro-spinning Applications in Nanocomposites, Compos. Sci. Technol., 63(15), 2223(2003). https://doi.org/10.1016/S0266-3538(03)00178-7
  16. X. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar, and L. A. Samuelson, Electrospun Nano-fibrous Membranes for Highly Sensitive Optical Sensors, Nano Lett., 2(11), 1273(2002). https://doi.org/10.1021/nl020216u
  17. W. Cui, X. Li, S. Zhou, and J. Weng, Investigation on Process Parameters of Electrospinning System through Orthogonal Experimental Design, J. Appl. Polym. Sci., 103(5), 3105(2007). https://doi.org/10.1002/app.25464
  18. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hisao, and B. Chu, Structure and Process Relationship of Electrospun Bioabsorbable Nanofiber Membranes, Polymer, 43(16), 4403(2002). https://doi.org/10.1016/S0032-3861(02)00275-6
  19. H. W. Lee, M. R. Karim, J. H. Park, H. D. Ghim, J. H. Choi, K. Kim, Y. Deng, and J. H. Yeum, Poly(vinyl alcohol)/Chitosan Oligosaccharide Blend Submicrometer Fibers Prepared from Aqueous Solutions by the Electrospinning Method, J. Appl. Polym. Sci., 111(1), 132(2009). https://doi.org/10.1002/app.29033
  20. J. H. He, Y. Q. Wan, and J. Y. Yu, Effect of Concentraion on Electrospun Polyacrylonitrile(PAN) Nanofibers, Fibers and Polymers, 9(2), 140(2008). https://doi.org/10.1007/s12221-008-0023-3
  21. Y. Cai, Q. Wang, Q. Wei, Q. You, F. Huang, L. Song, Y. Hu, and W. Gao, Structure, Thermal, and Antibacterial Properties of Polyacrylonitrile/Ferric Chloride Nanocomposite Fibers by Electrospinning, International J. Polymer Anal. Charact., 15(2), 110(2010). https://doi.org/10.1080/10236660903525083
  22. J. Y. Choi and J. H. Yeum, Effect of Inorganic Nanomaterials on the Morphology and Thermal Properties of PVA Nanocomposite Nanowebs, Textile Coloration and Finishing, 23(2), 83(2011). https://doi.org/10.5764/TCF.2011.23.2.83
  23. J. H. Yang, N. S. Yoon, I. K. Kim and J. H. Yeum, Fabrication of Waterproof and Moisture-permeable Polyurethane Nanofiber Multi-Membrane, Textile Coloration and Finishing, 23(2), 107(2011). https://doi.org/10.5764/TCF.2011.23.2.107
  24. S. S. Chin, K. Chiang, and A. G. Fane, The Stability of Polymeric Membranes in a $TiO_2$ Photocatalysis Process, J. Membrane Science, 275(1/2), 202(2006). https://doi.org/10.1016/j.memsci.2005.09.033

Cited by

  1. Electrospinning Fabrication of Poly(vinyl alcohol)/Pullulan/TiO2Nanofibers vol.26, pp.3, 2014, https://doi.org/10.5764/TCF.2014.26.3.195
  2. Characterization of photocatalytic composite nanofiber yarns with respect to their tensile properties vol.47, pp.5, 2018, https://doi.org/10.1177/1528083716679156