DOI QR코드

DOI QR Code

객체인식을 위한 FAST와 BRIEF 알고리즘 기반 FPGA 설계

FPGA based Implementation of FAST and BRIEF algorithm for Object Recognition

  • Heo, Hoon (Dept. of Computer Enginerring, Seokyeong University) ;
  • Lee, Kwang-Yeob (Dept. of Computer Enginerring, Seokyeong University)
  • 투고 : 2013.06.21
  • 심사 : 2013.06.27
  • 발행 : 2013.06.30

초록

본 논문은 기존의 FAST와 BRIEF 알고리즘을 Zynq-7000 Soc Platform에서 하드웨어로 구현했다. 대표적으로 SIFT 나 SURF 알고리즘을 사용하여 특징점 기반 하드웨어 가속기로 구현 하지만, 하드웨어 비용과 내부 메모리가 많이 필요하다. 제안하는 FAST & BRIEF 가속기는 기존의 SIFT 나 SURF 가속기 보다 내부 메모리 사용량을 약 57%, 하드웨어 비용을 약 70% 정도 감소하고, 수행 시간은 Clock 당 0.17 Pixel를 처리한다.

This paper implemented the conventional FAST and BRIEF algorithm as hardware on Zynq-7000 SoC Platform. Previous feature-based hardware accelerator is mostly implemented using the SIFT or SURF algorithm, but it requires excessive internal memory and hardware cost. The proposed FAST & BRIEF accelerator reduces approximately 57% of internal memory usage and 70% of hardware cost compared to the conventional SIFT or SURF accelerator, and it processes 0.17 pixel per Clock.

키워드

참고문헌

  1. D. G. Lowe, "Distinctive image features from scale-invariant keypoints", International Journal of Computer Vision, 60(2):91-110. 1, 2.
  2. H. Bay, E. Andreas, T. Tuytelaars and L. V. Gool, "Speeded-up roubst features", Computer Vision and Image Understanding, Vol 110, Issue 3, pp 346-359, June 2008. https://doi.org/10.1016/j.cviu.2007.09.014
  3. E. Rosten and T. Drummond. "Machine learning for high-speed corner detection", In European Conference on Computer Vision, volume 1, 2006. 1.
  4. M. Calonder, V. Lepetit, C. Strecha, and P .Fua, "Brief: Bi-nary robust independent elementary features. In European Conference on Computer Vision. 2010.
  5. A. Gionis, P. Indyk, and R. Motwani. "Similarity search in high dimensions via hashing",In M. P. Atkinson, M. E. Orlowska, P. Valduriez, S. B. Zdonik, andM. L. Brodie, editors, VLDB'99, Proceedings of 25th International Conference on Very Large Data Bases, September 7-10, 1999, Edinburgh, Scotland, UK, pages 518-529. Morgan Kaufmann, 1999. 6.
  6. V.Bonato, "A Parallel Hardware Architecutre for Scale and Rotation Inavariant Feature Detection", IEEE Transactions on Circuits and Systems for Video Technology, Vol.18, No.12, 2008.
  7. D. Bouris, T. Tuytelaars, and L.V. Gool, "SURF: Speeded Up Robust Features", 9th European Conf. Computer Vision, pages 404-417, 2006.
  8. K.Taek-Kyu, "An Embedded FAST Hardware Acclerator for Image Feature Detection", Journal of The Institute of Electronics Engineers, pages 28-34, 2012,3